Stochastic Modeling (Universitext)
暫譯: 隨機建模 (Universitext)
Nicolas Lanchier
- 出版商: Springer
- 出版日期: 2017-02-09
- 售價: $3,720
- 貴賓價: 9.5 折 $3,534
- 語言: 英文
- 頁數: 320
- 裝訂: Paperback
- ISBN: 3319500376
- ISBN-13: 9783319500379
海外代購書籍(需單獨結帳)
相關主題
商品描述
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes.
The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and Matlab™.
商品描述(中文翻譯)
三個相互關聯的部分構成了本書所涵蓋的內容,其中一些內容在傳統教科書中並未廣泛討論。在這部分內容中,讀者將迅速接觸到幾個不同的主題,並配有175個專注於現實世界問題的練習題。這些練習題涵蓋了從經典的概率論到基於數值模擬的更具研究導向的問題。該書旨在為數學和應用科學的研究生提供撰寫和使用研究用程式所需的工具和訓練。
本書的第一部分以簡要回顧測度論開始,並重新探討概率論的主要概念,從隨機變數到標準極限定理。第二部分涵蓋了傳統的隨機過程材料,包括馬丁蓋爾、離散時間馬可夫鏈、泊松過程和連續時間馬可夫鏈。所發展的理論通過各種例子來說明,這些例子圍繞著應用,如賭徒破產鏈、分支過程、對稱隨機漫步和排隊系統。第三部分則更具研究導向,討論在物理學、生物學和社會學中感興趣的特殊隨機過程。額外強調了歷史上用於發展隨機過程領域新數學技術的最小模型:邏輯斯蒂增長過程、Wright-Fisher模型、Kingman的合併過程、滲透模型、接觸過程和投票模型。進一步的內容解釋了這些特殊過程在建模視角上的相互聯繫,以及它們在C和Matlab™中的模擬能力。