Machine Learning for Health Informatics: State-of-the-Art and Future Challenges (Lecture Notes in Computer Science)

  • 出版商: Springer
  • 出版日期: 2016-12-10
  • 售價: $3,300
  • 貴賓價: 9.5$3,135
  • 語言: 英文
  • 頁數: 504
  • 裝訂: Paperback
  • ISBN: 3319504770
  • ISBN-13: 9783319504773
  • 相關分類: Machine LearningComputer-Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.
Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence.
This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

商品描述(中文翻譯)

機器學習(ML)是計算機科學中增長最快的領域,而健康資訊學(HI)則是其中最大的應用挑戰之一,未來將在改善醫療診斷、疾病分析和藥物開發方面帶來益處。然而,成功的健康資訊學機器學習需要協同努力,促進來自數據科學到可視化等多個學科專家的整合研究。解決複雜挑戰需要學科卓越與跨學科網絡的無界限合作。根據HCI-KDD方法,旨在結合兩者的優勢,以支持人類智慧與機器智慧的結合。這份最前沿的調查報告是國際HCI-KDD專家網絡的產出,包含22個精心挑選且經過同行評審的章節,探討健康資訊學中機器學習的熱門主題;這些章節討論了開放問題和未來挑戰,以促進該領域的進一步研究和國際進展。