Partial Differential Equations: Mathematical Techniques for Engineers (Mathematical Engineering)
暫譯: 偏微分方程:工程師的數學技術(數學工程)
Marcelo Epstein
- 出版商: Springer
- 出版日期: 2017-05-05
- 售價: $7,920
- 貴賓價: 9.5 折 $7,524
- 語言: 英文
- 頁數: 255
- 裝訂: Hardcover
- ISBN: 3319552112
- ISBN-13: 9783319552118
海外代購書籍(需單獨結帳)
相關主題
商品描述
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate students in engineering, but the book may also be beneficial for lecturers, and research experts both in academia in industry.
商品描述(中文翻譯)
本專著針對工程師提供了研究生級別的偏微分方程(PDEs)處理。書中首先回顧了常微分方程(ODEs)系統的幾何解釋,並且偏微分方程在工程中的出現是由於連續介質物理中的平衡法則的一般形式所驅動。四個章節專門詳細探討單一的一階偏微分方程,包括衝擊波和真正的非線性模型,並應用於交通設計和氣體動力學。書的其餘部分則處理二階方程。在對雙曲方程的處理中,盡可能使用幾何論證,並強調與離散振動系統的類比。擴散方程和勢方程提供了處理唯一性和對數據的連續依賴性問題的機會,涵蓋傅立葉積分、廣義函數(分佈)、杜阿梅爾原理、格林函數以及狄利克雷和諾依曼問題。目標讀者主要是工程學的研究生,但本書對於學術界和業界的講師及研究專家也可能有益。