The Data Science Design Manual (Texts in Computer Science)
暫譯: 數據科學設計手冊 (計算機科學文本)
Steven S. Skiena
- 出版商: Springer
- 出版日期: 2017-08-29
- 定價: $2,450
- 售價: 8.0 折 $1,960
- 語言: 英文
- 頁數: 445
- 裝訂: Hardcover
- ISBN: 3319554433
- ISBN-13: 9783319554433
-
相關分類:
Data-mining
-
相關翻譯:
大數據分析:理論、方法及應用 (簡中版)
立即出貨
買這商品的人也買了...
-
Seven Languages in Seven Weeks: A Pragmatic Guide to Learning Programming Languages (Paperback)$1,225$1,164 -
資料科學的商業運用 (Data science for business)$680$537 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$395 -
鳳凰專案|看 IT部門如何讓公司從谷底翻身的傳奇故事$480$379 -
Soft Skills 軟實力|軟體開發人員的生存手冊 (Soft Skills: The software developer's life manual)$520$411 -
React 學習手冊 (Learning React: Functional Web Development with React and Redux)$580$458 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
為你自己學 Git$500$425 -
邏輯力:邏輯思考的入門書 (修訂版)$260$234 -
自然語言處理:用人工智慧看懂中文$690$587 -
MIS 一定要懂的 82個網路技術知識$360$284 -
React. js 頂尖開發 -- 建立使用者介面的 JavaScript 函式庫, 2/e$480$408 -
用世界第一的服務:AWS 雲端平台把玩書$580$493 -
動手做深度強化學習 (Deep Reinforcement Learning Hands-On)$690$538 -
$2,340Linear Algebra and Optimization for Machine Learning: A Textbook (Hardcover) -
Guide to Competitive Programming: Learning and Improving Algorithms Through Contests, 2/e (Paperback)$1,900$1,862 -
智慧新世界--圖靈所沒有預料到的人工智慧$400$316 -
CQRS 命令查詢職責分離模式 (Command Query Responsibility Segregation)$500$390 -
$1,320Software Architecture Patterns for Serverless Systems: Architecting for innovation with events, autonomous services, and micro frontends (Paperback) -
Python - 最強入門 ChatGPT 助攻邁向數據科學之路 - 王者歸來 (全彩印刷第四版)$1,200$948 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
Node.js 量化投資全攻略:從資料收集到自動化交易系統建構實戰(iThome鐵人賽系列書)【軟精裝】$760$593 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748 -
Python x AI 辦公室作業自動化 : Word、Excel、PowerPoint、PDF、CSV、Pandas -- 多執行緒、排程、藝術二維碼、短網址、電子郵件、爬蟲$880$695 -
人工智慧的現在與未來:它將如何改變全世界$680$578
商品描述
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data.
The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles.
This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well.
Additional learning tools:
- Contains “War Stories,” offering perspectives on how data science applies in the real world
- Includes “Homework Problems,” providing a wide range of exercises and projects for self-study
- Provides a complete set of lecture slides and online video lectures at www.data-manual.com
- Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter
- Recommends exciting “Kaggle Challenges” from the online platform Kaggle
- Highlights “False Starts,” revealing the subtle reasons why certain approaches fail
- Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
商品描述(中文翻譯)
這本引人入勝且清晰易懂的教科書/參考書提供了對快速崛起的跨學科領域——數據科學的必備介紹。它專注於成為一名優秀數據科學家的基本原則,以及建立收集、分析和解釋數據系統所需的關鍵技能。
《數據科學設計手冊》是一個實用見解的來源,突顯了在分析數據時真正重要的內容,並提供了對這些核心概念如何使用的直觀理解。這本書並不強調任何特定的程式語言或數據分析工具套件,而是專注於重要設計原則的高層次討論。
這本易讀的文本理想地滿足了本科生和早期研究生在修讀“數據科學導論”課程時的需求。它揭示了這一學科如何位於統計學、計算機科學和機器學習的交匯處,並擁有自己獨特的重量和特徵。這些及相關領域的從業者也會發現這本書非常適合自學。
附加學習工具:
- 包含“戰爭故事”,提供數據科學在現實世界中應用的觀點
- 包括“作業問題”,提供廣泛的練習和專案供自學使用
- 提供完整的講義幻燈片和在線視頻講座,網址為 www.data-manual.com
- 提供“家庭作業課程”,強調每章要學習的大局概念
- 推薦來自在線平台 Kaggle 的精彩“Kaggle 挑戰”
- 突顯“錯誤的開始”,揭示某些方法失敗的微妙原因
- 提供來自數據科學電視節目《量化商店》(www.quant-shop.com)的範例
