Finite and Profinite Quantum Systems (Quantum Science and Technology)
暫譯: 有限與極限量子系統(量子科學與技術)

Apostolos Vourdas

  • 出版商: Springer
  • 出版日期: 2017-07-28
  • 售價: $3,490
  • 貴賓價: 9.5$3,316
  • 語言: 英文
  • 頁數: 196
  • 裝訂: Hardcover
  • ISBN: 331959494X
  • ISBN-13: 9783319594941
  • 相關分類: 量子 Quantum
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics.

The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. 

The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers.

Applications of the formalism include quantum optics and quantum computing, two-dimensional electron systems in magnetic fields and the magnetic translation group, the quantum Hall effect, other areas in condensed matter physics, and Fast Fourier Transforms.

The monograph combines ideas from quantum mechanics with discrete mathematics, algebra, and number theory. It is suitable for graduate students and researchers in quantum physics, mathematics and computer science.

商品描述(中文翻譯)

這本專著介紹了有限量子系統,這是一個位於量子資訊與數論之間的領域,並在量子計算和凝聚態物理中有應用。

這本專著的第一個主要部分研究了所謂的「量子位元(qubits)」和「量子十位元(qudits)」,這些系統的位置信息空間是具有周期性的有限晶格。它還討論了所謂的互不相干基底(mutually unbiased bases),這在量子資訊和量子密碼學中有應用。量子邏輯及其在量子閘中的應用也被研究。

第二部分研究了有限量子系統,其中位置取值於伽羅瓦域(Galois field)。這將量子力學與伽羅瓦理論結合起來。第三部分將討論擴展到變數在完備群(profinite groups)中的量子系統,考慮系統維度變得非常大的極限。它使用逆極限(inverse limit)和直接極限(direct limit)的概念,並研究在p-進數(p-adic numbers)上的量子力學。

該形式的應用包括量子光學和量子計算、在磁場中的二維電子系統及其磁性平移群、量子霍爾效應、凝聚態物理的其他領域,以及快速傅立葉變換(Fast Fourier Transforms)。

這本專著結合了量子力學、離散數學、代數和數論的思想。適合研究生和量子物理、數學及計算機科學的研究人員。