hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (SpringerBriefs in Mathematics)
暫譯: hp-版本不連續Galerkin方法於多邊形及多面體網格上 (SpringerBriefs in Mathematics)

Andrea Cangiani

  • 出版商: Springer
  • 出版日期: 2017-12-07
  • 售價: $2,790
  • 貴賓價: 9.5$2,651
  • 語言: 英文
  • 頁數: 140
  • 裝訂: Paperback
  • ISBN: 3319676717
  • ISBN-13: 9783319676715
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages.

This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen

t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.  

商品描述(中文翻譯)

在過去幾十年中,不連續Galerkin有限元素方法(DGFEMs)作為數值解決偏微分方程的計算框架,受到了極大的關注。它們的成功歸因於在設計基礎網格和局部基函數方面的極高靈活性,同時保留了(經典)有限元素法和有限體積法的關鍵特徵。令人驚訝的是,儘管具有潛在的計算優勢,DGFEMs在由多邊形(2D)或多面體(3D)元素形狀組成的一般劃分上,在文獻中卻鮮有關注。

本書介紹了hp版本(即局部變化的網格大小和多項式階數)DGFEMs的基本原理,這些方法基於由多邊形或多面體元素形狀組成的網格,並呈現其誤差分析,還包括大量的數值實驗。局部可變的元素形狀、元素大小和元素階數所提供的極大靈活性在幾個實際場景中顯示出顯著的計算增益。