Behavioral Program Synthesis with Genetic Programming
暫譯: 基於遺傳程式設計的行為程式合成

Krawiec, Krzysztof

  • 出版商: Springer
  • 出版日期: 2019-03-29
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 172
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3319801716
  • ISBN-13: 9783319801711
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Genetic programming (GP) is a popular heuristic methodology of program synthesis with origins in evolutionary computation. In this generate-and-test approach, candidate programs are iteratively produced and evaluated. The latter involves running programs on tests, where they exhibit complex behaviors reflected in changes of variables, registers, or memory. That behavior not only ultimately determines program output, but may also reveal its hidden qualities' and important characteristics of the considered synthesis problem. However, the conventional GP is oblivious to most of that information and usually cares only about the number of tests passed by a program. This evaluation bottleneck' leaves search algorithm underinformed about the actual and potential qualities of candidate programs.

This book proposes behavioral program synthesis, a conceptual framework that opens GP to detailed information on program behavior in order to make program synthesis more efficient. Several existing and novel mechanisms subscribing to that perspective to varying extent are presented and discussed, including implicit fitness sharing, semantic GP, co-solvability, trace convergence analysis, pattern-guided program synthesis, and behavioral archives of subprograms. The framework involves several concepts that are new to GP, including execution record, combined trace, and search driver, a generalization of objective function. Empirical evidence gathered in several presented experiments clearly demonstrates the usefulness of behavioral approach. The book contains also an extensive discussion of implications of the behavioral perspective for program synthesis and beyond.

商品描述(中文翻譯)

遺傳程式設計(Genetic Programming, GP)是一種流行的啟發式程式合成方法,起源於演化計算。在這種生成與測試的方式中,候選程式會被反覆產生並評估。評估過程涉及在測試上運行程式,這些程式會顯示出複雜的行為,這些行為反映在變數、暫存器或記憶體的變化中。這種行為不僅最終決定了程式的輸出,還可能揭示其隱藏的特質以及所考慮的合成問題的重要特徵。然而,傳統的 GP 對這些資訊大多無感,通常只關心程式通過的測試數量。這種評估瓶頸使得搜尋演算法對候選程式的實際和潛在特質了解不足。

本書提出了行為程式合成(behavioral program synthesis),這是一個概念框架,旨在使 GP 能夠獲取有關程式行為的詳細資訊,以提高程式合成的效率。本書介紹並討論了幾種現有的和新穎的機制,這些機制在不同程度上遵循這一觀點,包括隱式適應度共享、語義 GP、共同可解性、追蹤收斂分析、模式引導的程式合成以及子程式的行為檔案。該框架涉及幾個對 GP 來說是新的概念,包括執行記錄、綜合追蹤和搜尋驅動器,這是一種目標函數的概括。在幾個實驗中收集的實證證據清楚地顯示了行為方法的實用性。本書還對行為觀點對程式合成及其他領域的影響進行了廣泛的討論。