Recent Advances in Learning Automata

Rezvanian, Alireza, Saghiri, Ali Mohammad, Vahidipour, Seyed Mehdi

  • 出版商: Springer
  • 出版日期: 2019-06-06
  • 售價: $4,430
  • 貴賓價: 9.5$4,209
  • 語言: 英文
  • 頁數: 458
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3319891820
  • ISBN-13: 9783319891828
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book collects recent theoretical advances and concrete applications of learning automata (LAs) in various areas of computer science, presenting a broad treatment of the computer science field in a survey style. Learning automata (LAs) have proven to be effective decision-making agents, especially within unknown stochastic environments. The book starts with a brief explanation of LAs and their baseline variations. It subsequently introduces readers to a number of recently developed, complex structures used to supplement LAs, and describes their steady-state behaviors. These complex structures have been developed because, by design, LAs are simple units used to perform simple tasks; their full potential can only be tapped when several interconnected LAs cooperate to produce a group synergy.
In turn, the next part of the book highlights a range of LA-based applications in diverse computer science domains, from wireless sensor networks, to peer-to-peer networks, to complex social networks, and finally to Petri nets. The book accompanies the reader on a comprehensive journey, starting from basic concepts, continuing to recent theoretical findings, and ending in the applications of LAs in problems from numerous research domains. As such, the book offers a valuable resource for all computer engineers, scientists, and students, especially those whose work involves the reinforcement learning and artificial intelligence domains.