Machine Learning for Beginners: Learn to Build Machine Learning Systems Using Python (English Edition)
暫譯: 初學者的機器學習:使用 Python 建立機器學習系統

Bhasin, Harsh

  • 出版商: BPB Publications
  • 出版日期: 2020-08-21
  • 售價: $1,250
  • 貴賓價: 9.5$1,188
  • 語言: 英文
  • 頁數: 264
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9389845424
  • ISBN-13: 9789389845426
  • 相關分類: Python程式語言Machine Learning
  • 無法訂購

相關主題

商品描述

Get familiar with various Supervised, Unsupervised and Reinforcement learning algorithms

Key Features
  • Understand the types of Machine learning.
  • Get familiar with different Feature extraction methods.
  • Get an overview of how Neural Network Algorithms work.
  • Learn how to implement Decision Trees and Random Forests.
  • The book not only explains the Classification algorithms but also discusses the deviations/ mathematical modeling.

  • Description
    This book covers important concepts and topics in Machine Learning. It begins with Data Cleansing and presents an overview of Feature Selection. It then talks about training and testing, cross-validation, and Feature Selection. The book covers algorithms and implementations of the most common Feature Selection Techniques. The book then focuses on Linear Regression and Gradient Descent. Some of the important Classification techniques such as K-nearest neighbors, logistic regression, Na ve Bayesian, and Linear Discriminant Analysis are covered in the book. It then gives an overview of Neural Networks and explains the biological background, the limitations of the perceptron, and the backpropagation model. The Support Vector Machines and Kernel methods are also included in the book. It then shows how to implement Decision Trees and Random Forests.

    Towards the end, the book gives a brief overview of Unsupervised Learning. Various Feature Extraction techniques, such as Fourier Transform, STFT, and Local Binary patterns, are covered. The book also discusses Principle Component Analysis and its implementation.

    What will you learn
  • Learn how to prepare Data for Machine Learning.
  • Learn how to implement learning algorithms from scratch.
  • Use scikit-learn to implement algorithms.
  • Use various Feature Selection and Feature Extraction methods.
  • Learn how to develop a Face recognition system.

  • Who this book is for
    The book is designed for Undergraduate and Postgraduate Computer Science students and for the professionals who intend to switch to the fascinating world of Machine Learning. This book requires basic know-how of programming fundamentals, Python, in particular.

    Table of Contents
    1. An introduction to Machine Learning
    2. The beginning: Pre-Processing and Feature Selection
    3. Regression
    4. Classification
    5. Neural Networks- I
    6. Neural Networks-II
    7. Support Vector machines
    8. Decision Trees
    9. Clustering
    10. Feature Extraction
    Appendix
    A1. Cheat Sheets
    A2. Face Detection
    A3.Biblography

    About the Author
    Harsh Bhasin is an Applied Machine Learning researcher. Mr. Bhasin worked as Assistant Professor in Jamia Hamdard, New Delhi, and taught as a guest faculty in various institutes including Delhi Technological University. Before that, he worked in C# Client-Side Development and Algorithm Development.
    Mr. Bhasin has authored a few papers published in renowned journals including Soft Computing, Springer, BMC Medical Informatics and Decision Making, AI and Society, etc. He is the reviewer of prominent journals and has been the editor of a few special issues. He has been a recipient of a distinguished fellowship.
    Outside work, he is deeply interested in Hindi Poetry, progressive era; Hindustani Classical Music, percussion instruments.
    His areas of interest include Data Structures, Algorithms Analysis and Design, Theory of Computation, Python, Machine Learning and Deep learning.

    Your LinkedIn Profile:
    https: //in.linkedin.com/in/harsh-bhasin-69134426

    商品描述(中文翻譯)

    熟悉各種監督式、非監督式和強化學習演算法

    主要特點

  • 了解機器學習的類型。
  • 熟悉不同的特徵提取方法。
  • 概述神經網絡演算法的運作方式。
  • 學習如何實作決策樹和隨機森林。
  • 本書不僅解釋分類演算法,還討論偏差/數學建模。

  • 描述
    本書涵蓋機器學習中的重要概念和主題。它從數據清理開始,並介紹特徵選擇的概述。接著討論訓練和測試、交叉驗證以及特徵選擇。本書涵蓋了最常見的特徵選擇技術的演算法和實作。然後本書專注於線性回歸和梯度下降。書中涵蓋了一些重要的分類技術,如K最近鄰、邏輯回歸、朴素貝葉斯和線性判別分析。接著給出神經網絡的概述,並解釋生物背景、感知器的限制以及反向傳播模型。支持向量機和核方法也包含在書中。然後展示如何實作決策樹和隨機森林。

    在結尾部分,本書簡要概述了非監督式學習。涵蓋了各種特徵提取技術,如傅立葉變換、短時傅立葉變換(STFT)和局部二元模式。書中還討論了主成分分析及其實作。

    您將學到什麼
  • 學習如何為機器學習準備數據。
  • 學習如何從零開始實作學習演算法。
  • 使用scikit-learn實作演算法。
  • 使用各種特徵選擇和特徵提取方法。
  • 學習如何開發人臉識別系統。

  • 本書適合誰
    本書為本科生和研究生的計算機科學學生以及有意轉向機器學習迷人世界的專業人士而設計。本書需要對編程基礎有基本了解,特別是Python。

    目錄
    1. 機器學習簡介
    2. 開始:預處理和特徵選擇
    3. 回歸
    4. 分類
    5. 神經網絡 - I
    6. 神經網絡 - II
    7. 支持向量機
    8. 決策樹
    9. 聚類
    10. 特徵提取
    附錄
    A1. 速查表
    A2. 人臉檢測
    A3. 參考文獻

    關於作者
    Harsh Bhasin是一位應用機器學習研究員。Bhasin先生曾在新德里的Jamia Hamdard擔任助理教授,並在包括德里科技大學在內的多個機構擔任客座講師。在此之前,他從事C#客戶端開發和演算法開發工作。
    Bhasin先生已發表數篇論文,刊登於知名期刊,包括《Soft Computing》、《Springer》、《BMC Medical Informatics and Decision Making》、《AI and Society》等。他是多個知名期刊的審稿人,並曾擔任幾個特刊的編輯。他曾獲得卓越獎學金。
    在工作之外,他對印地語詩歌、進步時代、印度古典音樂和打擊樂器有濃厚興趣。
    他的研究領域包括數據結構、演算法分析與設計、計算理論、Python、機器學習和深度學習。

    您的LinkedIn個人檔案:
    https://in.linkedin.com/in/harsh-bhasin-69134426