Random Ordinary Differential Equations and Their Numerical Solution (Probability Theory and Stochastic Modelling)
暫譯: 隨機常微分方程及其數值解法(機率論與隨機建模)

Xiaoying Han, Peter E. Kloeden

  • 出版商: Springer
  • 出版日期: 2017-11-08
  • 售價: $6,400
  • 貴賓價: 9.5$6,080
  • 語言: 英文
  • 頁數: 250
  • 裝訂: Hardcover
  • ISBN: 9811062641
  • ISBN-13: 9789811062643
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).

 

RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable.  Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense.  However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs.

 

The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology.  A basic knowledge of ordinary differential equations and numerical analysis is required. 

商品描述(中文翻譯)

這本書旨在將有關隨機常微分方程(RODEs)高階數值方案推導的最新成果提供給更廣泛的讀者,並使讀者熟悉RODEs及其密切相關的隨機動力系統理論。此外,本書展示了RODEs在生物科學中的應用,因為在隨機微分方程(SODEs)中,非高斯和有界噪聲通常比高斯白噪聲更為現實。

RODEs在許多重要應用中被使用,並在隨機動力系統理論中扮演著基本角色。它們可以使用確定性微積分進行路徑分析,但由於其時間變量缺乏光滑性,這需要超越經典常微分方程理論的進一步處理。雖然經典的常微分方程數值方案可以用於RODEs的路徑分析,但由於RODEs的解不具備足夠的光滑性以進行傳統意義上的泰勒展開,因此它們很少能達到其傳統的階數。然而,可以通過在積分形式中適當鏈式法則的迭代應用來推導類似泰勒的展開,這代表了系統性推導RODEs一致高階數值方案的起點。

本書面向應用數學、計算數學及相關領域的廣泛讀者,以及對涉及隨機效應的數學模型應用感興趣的讀者,特別是在生物科學領域。本書的水平適合應用數學及相關領域、計算科學和系統生物學的研究生。需要具備基本的常微分方程和數值分析知識。