Characterizing Interdependencies of Multiple Time Series: Theory and Applications (SpringerBriefs in Statistics)
暫譯: 多重時間序列的相互依賴性特徵:理論與應用(SpringerBriefs in Statistics)

Yuzo Hosoya

  • 出版商: Springer
  • 出版日期: 2017-11-08
  • 售價: $2,490
  • 貴賓價: 9.5$2,366
  • 語言: 英文
  • 頁數: 144
  • 裝訂: Paperback
  • ISBN: 9811064350
  • ISBN-13: 9789811064357
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement.

Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case.

Chapters 2 and 3 of the book introduce an improved version of the basic concepts for measuring the one-way effect, reciprocity, and association of multiple time series, which were originally proposed by Hosoya. Then the statistical inferences of these measures are presented, with a focus on the stationary multivariate autoregressive moving-average processes, which include the estimation and test of causality change. Empirical analyses are provided to illustrate what alternative aspects are detected and how the methods introduced here can be conveniently applied. Most of the materials in Chapters 4 and 5 are based on the authors' latest research work. Subsidiary items are collected in the Appendix.


商品描述(中文翻譯)

這本書向學術研究者和專業人士介紹了在頻域中表徵多重時間序列相互依賴性的基本概念和方法。檢測一對時間序列之間的因果方向及其影響程度,以及測試它們之間不存在反饋關係,已成為自從 Granger 提出著名的因果性定義以改善預測以來,多重時間序列分析的主要焦點。

因果性分析自此在許多學科中得到了廣泛應用。儘管大多數分析是從時間域的角度進行的,但本書介紹的頻域方法為另一個方面提供了新的見解,該方法從長期或短期影響的角度解開多重時間序列之間的相互依賴性,並對其進行定量表徵。頻域方法包括 Granger 非因果性檢驗作為一個特例。

本書的第二章和第三章介紹了改進版的基本概念,用於測量多重時間序列的一向效應、互惠性和關聯性,這些概念最初由 Hosoya 提出。然後,介紹了這些測量的統計推斷,重點放在平穩的多變量自回歸移動平均過程上,包括因果性變化的估計和檢驗。提供了實證分析以說明檢測到的替代方面,以及這裡介紹的方法如何方便地應用。第四章和第五章的大部分材料基於作者最新的研究工作。附錄中收集了附屬項目。