Elements of Hilbert Spaces and Operator Theory
暫譯: 希爾伯特空間與算子理論的元素
Vasudeva, Harkrishan Lal
- 出版商: Springer
- 出版日期: 2018-07-29
- 售價: $6,540
- 貴賓價: 9.5 折 $6,213
- 語言: 英文
- 頁數: 522
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9811097658
- ISBN-13: 9789811097652
海外代購書籍(需單獨結帳)
相關主題
商品描述
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators.
In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.商品描述(中文翻譯)
本書介紹了希爾伯特空間的幾何學和算子理論,目標讀者為數學研究生及高年級本科生。書中討論的主要主題包括內積空間、線性算子、譜理論及特殊類別的算子,以及巴拿赫空間。在向量空間中,施加了內積的結構。在討論希爾伯特空間的幾何學後,研究了其在數學各個分支中的應用。書中還介紹了正交多項式及其在傅立葉級數和近似中的應用。算子的譜是理解該算子的關鍵。不同類別算子的譜的性質,如正常算子、自伴算子、單位算子、等距算子和緊算子,均有討論。書中提供了大量算子的例子,並詳細說明了它們的譜及其分解為點譜、連續譜、餘譜、近似點譜和壓縮譜。自伴算子和正常算子的譜定理遵循緊正常算子的譜定理。本書還討論了不變子空間,特別關注於沃爾泰拉算子和無界算子。
為了使文本盡可能易於理解,書中引入了主題的動機,並提供了比標準教材中通常更多的解釋。書中的抽象理論輔以具體例子。預期這些特點將幫助讀者很好地掌握所討論的主題。所有問題的提示和解答集中在書末。當需要時,書中還引入了額外的特點。這種精神貫穿整本書。
作者簡介
作者簡介(中文翻譯)
哈克里尚·拉爾·瓦蘇德瓦(HARKRISHAN LAL VASUDEVA)曾於2010年至2016年間擔任印度莫哈里科學教育與研究所的數學訪問教授。在此之前,他曾在印度昌迪加爾的旁遮普大學任教,並在英國謝菲爾德大學和奧地利格拉茨大學擔任訪問職位,參與研究項目。他在多個國際期刊上發表了大量研究文章,並共同撰寫了幾本書籍,其中兩本已由Springer出版。