Numsense! Data Science for the Layman: No Math Added
暫譯: 數據科學入門:無數學版
Annalyn Ng, Kenneth Soo
- 出版商: ***
- 出版日期: 2017-03-24
- 定價: $1,220
- 售價: 8.0 折 $976
- 語言: 英文
- 頁數: 146
- 裝訂: Paperback
- ISBN: 9811110689
- ISBN-13: 9789811110689
-
相關分類:
Data Science
-
相關翻譯:
文科生也看得懂的資料科學 (繁中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$350$315 -
$620$489 -
$990$891 -
$1,558Introduction to Algorithms, 3/e (IE-Paperback)
-
$640$544 -
$650$585 -
$490$417 -
$620$490 -
$980$833 -
$780$616 -
$352人人都是資料分析師:Tableau 應用實戰
-
$3,180$3,021 -
$680$578 -
$500$395 -
$520$411 -
$590$460 -
$390$257 -
$900$711 -
$958深度學習
-
$580$458 -
$420$332 -
$480$408 -
$780$663 -
$480$379 -
$380$296
相關主題
商品描述
Used in Stanford's CS102 Big Data (Spring 2017) course.
Want to get started on data science?
Our promise: no math added.
This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly.
Popular concepts covered include:
- A/B Testing
- Anomaly Detection
- Association Rules
- Clustering
- Decision Trees and Random Forests
- Regression Analysis
- Social Network Analysis
- Neural Networks
Features:
- Intuitive explanations and visuals
- Real-world applications to illustrate each algorithm
- Point summaries at the end of each chapter
- Reference sheets comparing the pros and cons of algorithms
- Glossary list of commonly-used terms
With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.
商品描述(中文翻譯)
用於史丹佛大學的 CS102 大數據(2017 年春季)課程。
想要開始學習資料科學嗎?
我們的承諾:不需要數學。
本書以淺顯易懂的語言撰寫,作為資料科學及其演算法的溫和入門。每個演算法都有專門的章節來解釋其運作方式,並展示一個真實世界應用的範例。為了幫助您掌握關鍵概念,我們堅持使用直觀的解釋,以及大量的視覺輔助,所有內容均考慮到色盲友好。
涵蓋的熱門概念包括:
- A/B 測試
- 異常檢測
- 關聯規則
- 聚類
- 決策樹與隨機森林
- 回歸分析
- 社交網絡分析
- 神經網絡
特色:
- 直觀的解釋和視覺輔助
- 真實世界的應用來說明每個演算法
- 每章結尾的要點總結
- 比較演算法優缺點的參考表
- 常用術語的詞彙表
透過本書,我們希望能讓您對資料科學有實際的理解,讓您也能利用其優勢做出更好的決策。