Applied Deep Learning with Python: Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions
暫譯: 應用深度學習與 Python:使用 scikit-learn、TensorFlow 和 Keras 創建智能系統與機器學習解決方案

Alex Galea, Luis Capelo

買這商品的人也買了...

相關主題

商品描述

A hands-on guide to deep learning that's filled with intuitive explanations and engaging practical examples

Key Features

  • Designed to iteratively develop the skills of Python users who don't have a data science background
  • Covers the key foundational concepts you'll need to know when building deep learning systems
  • Full of step-by-step exercises and activities to help build the skills that you need for the real-world

Book Description

Taking an approach that uses the latest developments in the Python ecosystem, you'll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We'll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It's okay if these terms seem overwhelming; we'll show you how to put them to work.

We'll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It's after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data.

By guiding you through a trained neural network, we'll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We'll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively.

What you will learn

  • Discover how you can assemble and clean your very own datasets
  • Develop a tailored machine learning classification strategy
  • Build, train and enhance your own models to solve unique problems
  • Work with production-ready frameworks like Tensorflow and Keras
  • Explain how neural networks operate in clear and simple terms
  • Understand how to deploy your predictions to the web

Who this book is for

If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.

Table of Contents

  1. Jupyter Fundamentals
  2. Data Cleaning and Advanced Machine Learning
  3. Web Scraping and Interactive Visualizations
  4. Introduction to Neural Networks and Deep Learning
  5. Model Architecture
  6. Model Evaluation
  7. Productization

商品描述(中文翻譯)

一個實用的深度學習指南,充滿直觀的解釋和引人入勝的實踐範例

主要特點
- 設計用於逐步培養沒有數據科學背景的 Python 使用者的技能
- 涵蓋建立深度學習系統所需了解的關鍵基礎概念
- 充滿逐步練習和活動,幫助建立您在現實世界中所需的技能

書籍描述
本書採用最新的 Python 生態系統發展,首先將引導您了解 Jupyter 生態系統、關鍵的可視化庫和強大的數據清理技術,然後我們將訓練第一個預測模型。我們將探索多種分類方法,如支持向量機、隨機決策森林和 k 最近鄰,以增強您的理解,然後再進入更複雜的領域。如果這些術語讓您感到不知所措也沒關係;我們會告訴您如何將它們付諸實踐。

我們將在分類的基礎上,快速了解倫理網頁爬蟲和互動式可視化,幫助您專業地收集和呈現分析結果。在這之後,我們將開始構建我們的基石深度學習應用,旨在根據歷史公共數據預測比特幣的未來價格。

通過引導您了解訓練過的神經網絡,我們將探索常見的深度學習網絡架構(卷積、遞歸、生成對抗)並擴展到深度強化學習,然後再深入模型優化和評估。我們將在開發一個結合 Tensorflow 和 Keras 的生產就緒網頁應用的過程中完成所有這些,產出有意義且用戶友好的結果,讓您擁有自信和有效地應對和開發自己的現實世界深度學習項目所需的所有技能。

您將學到什麼
- 發現如何組裝和清理您自己的數據集
- 開發量身定制的機器學習分類策略
- 構建、訓練和增強自己的模型以解決獨特問題
- 使用生產就緒的框架,如 Tensorflow 和 Keras
- 用清晰簡單的術語解釋神經網絡的運作
- 理解如何將您的預測部署到網絡上

本書適合誰
如果您是一位 Python 程式設計師,正踏入數據科學的世界,這是開始的理想方式。

目錄
1. Jupyter 基礎
2. 數據清理與進階機器學習
3. 網頁爬蟲與互動式可視化
4. 神經網絡與深度學習簡介
5. 模型架構
6. 模型評估
7. 產品化