Granular Video Computing: With Rough Sets, Deep Learning and in Iot
暫譯: 細粒度視頻計算:結合粗集、深度學習與物聯網

Chakraborty, Debarati Bhunia, Pal, Sankar Kumar

  • 出版商: World Scientific Pub
  • 出版日期: 2021-03-03
  • 售價: $2,770
  • 貴賓價: 9.5$2,632
  • 語言: 英文
  • 頁數: 256
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 981122711X
  • ISBN-13: 9789811227110
  • 相關分類: DeepLearning物聯網 IoT
  • 立即出貨 (庫存=1)

相關主題

商品描述

This volume links the concept of granular computing using deep learning and the Internet of Things to object tracking for video analysis. It describes how uncertainties, involved in the task of video processing, could be handled in rough set theoretic granular computing frameworks. Issues such as object tracking from videos in constrained situations, occlusion/overlapping handling, measuring of the reliability of tracking methods, object recognition and linguistic interpretation in video scenes, and event prediction from videos, are the addressed in this volume. The book also looks at ways to reduce data dependency in the context of unsupervised (without manual interaction/ labeled data/ prior information) training.This book may be used both as a textbook and reference book for graduate students and researchers in computer science, electrical engineering, system science, data science, and information technology, and is recommended for both students and practitioners working in computer vision, machine learning, video analytics, image analytics, artificial intelligence, system design, rough set theory, granular computing, and soft computing.

商品描述(中文翻譯)

本卷將使用深度學習和物聯網的顆粒計算概念與視頻分析中的物體追蹤聯繫起來。它描述了在視頻處理任務中涉及的不確定性如何在粗集理論的顆粒計算框架中進行處理。本書探討了在受限情況下從視頻中進行物體追蹤、遮擋/重疊處理、追蹤方法的可靠性測量、視頻場景中的物體識別和語言解釋,以及從視頻中進行事件預測等問題。本書還研究了在無監督(無手動互動/標記數據/先前信息)訓練的背景下減少數據依賴的方法。本書可作為計算機科學、電氣工程、系統科學、數據科學和信息技術的研究生和研究人員的教科書和參考書,並推薦給從事計算機視覺、機器學習、視頻分析、圖像分析、人工智慧、系統設計、粗集理論、顆粒計算和軟計算的學生和實務工作者。