Value Distribution in Ultrametric Analysis and Application
Escassut, Alain
- 出版商: World Scientific Pub
- 出版日期: 2025-01-30
- 售價: $6,330
- 貴賓價: 9.5 折 $6,014
- 語言: 英文
- 頁數: 500
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9811298327
- ISBN-13: 9789811298325
尚未上市,無法訂購
相關主題
商品描述
After a construction of the complete ultrametric fields K, the book presents most of properties of analytic and meromorphic functions in K: algebras of analytic elements, power series in a disk, order, type and cotype of growth of entire functions, clean functions, question on a relation true for clean functions. and a counter-example on a non-clean function. Transcendence order and transcendence type are examined with specific properties of certain p-adic numbers.The Kakutani problem for the 'corona problem' is recalled and multiplicative semi-norms are described. Problems on exponential polynomials. Meromorphic functions are introduced and the Nevanlinna Theory is explained with its applications, particularly to problems of uniqueness. Injective analytic elements and meromorphic functions are examined and characterized through a relation.The Nevanlinna Theory out of a hole is described. Many results on zeros of a meromorphic function and its derivative are examined, particularly the solution of the Hayman conjecture in a P-adic field is given. Moreover, if a meromorphic functions in all the field, admitting primitives, admit a Picard value, then it must have enormously many poles. Branched values are examined. With links to growth order of the denominator. The Nevanlinna theory on small functions is explained with applications to uniqueness for a pair of meromorphic functions sharing a few small functions. A short presentation in characteristic p is given with applications on Yoshida equation.
商品描述(中文翻譯)
在完整的超度量場 K 的建構之後,本書介紹了 K 中解析函數和亞解析函數的大多數性質:解析元素的代數、圓盤中的冪級數、整函數的增長階、類型和共類型、乾淨函數、關於乾淨函數的真實關係的問題,以及一個非乾淨函數的反例。超越階和超越類型則與某些 p-adic 數的特定性質進行了探討。回顧了 Kakutani 問題與「冠狀問題」,並描述了乘法半範數。還探討了指數多項式的問題。引入了亞解析函數,並解釋了 Nevanlinna 理論及其應用,特別是在唯一性問題上。通過一個關係檢視和特徵化注入的解析元素和亞解析函數。描述了 Nevanlinna 理論在一個空洞中的情況。檢視了許多關於亞解析函數及其導數的零點的結果,特別是給出了在 P-adic 場中 Hayman 猜想的解。此外,如果一個在整個場中存在原始函數的亞解析函數承認一個 Picard 值,那麼它必須有非常多的極點。檢視了分支值,並與分母的增長階相關聯。解釋了 Nevanlinna 理論在小函數上的應用,特別是對於共享少數小函數的兩個亞解析函數的唯一性問題。提供了在特徵 p 下的簡短介紹,並應用於 Yoshida 方程。