Bayesian Statistical Modeling with Stan, R, and Python
Matsuura, Kentaro
- 出版商: Springer
- 出版日期: 2024-01-25
- 售價: $5,710
- 貴賓價: 9.5 折 $5,425
- 語言: 英文
- 頁數: 385
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9811947570
- ISBN-13: 9789811947575
-
相關分類:
Python、程式語言、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.
The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.
Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.
商品描述(中文翻譯)
本書提供了一個非常實用的貝葉斯統計建模入門,使用的工具是 Stan,這已成為最受歡迎的概率編程語言。
本書分為四個部分。第一部分回顧了建模和貝葉斯推斷的理論背景,並提出了一個建模工作流程,使建模更具工程性而非藝術性。第二部分從最基本的回歸分析開始,討論了 Stan、CmdStanR 和 CmdStanPy 的使用。第三部分介紹了多種概率分佈、非線性模型和層級(多層次)模型,這些都是掌握統計建模的關鍵。它還描述了許多常用的建模技術,如截尾、異常值、缺失數據、加速和參數約束,並討論了如何引導 MCMC 的收斂。最後,第四部分探討了現實世界數據的進階主題:縱向數據分析、狀態空間模型、空間數據分析、高斯過程、貝葉斯優化、降維、模型選擇和信息準則,展示了 Stan 如何在僅僅 30 行代碼內解決這些問題中的任何一個。
本書使用了大量易於理解的範例,解釋了關鍵概念,這些概念在使用未來版本的 Stan 和其他統計建模工具時仍然非常有用。這些範例不需要專業領域知識,並且可以推廣到許多領域。本書對代碼和數學公式提供了完整的解釋,使讀者能夠擴展模型以解決自己的問題。所有的代碼和數據都在 GitHub 上。