Deep Learning for Time Series Cookbook: Use PyTorch and Python recipes for forecasting, classification, and anomaly detection (Paperback) (深度學習時間序列食譜:使用 PyTorch 和 Python 進行預測、分類與異常檢測)
Cerqueira, Vitor, Roque, Luís
- 出版商: Packt Publishing
- 出版日期: 2024-03-29
- 售價: $1,998
- 貴賓價: 9.5 折 $1,898
- 語言: 英文
- 頁數: 274
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805129236
- ISBN-13: 9781805129233
-
相關分類:
Python、程式語言、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$414$393 -
$534$507 -
$1,758$1,665 -
$588$559 -
$780$616 -
$658UiPath RPA 開發:入門、實戰與進階
-
$305ITIL 4 與 DevOps 服務管理認證指南, 2/e
-
$403PyTorch 開發入門:深度學習模型的構建與程序實現
-
$636$604 -
$1,960$1,862 -
$1,850$1,813 -
$458PyTorch 深度學習簡明實戰
-
$2,070$1,967 -
$528$502 -
$621使用 GitOps 實現 Kubernetes 的持續部署:模式、流程及工具
-
$599$569 -
$539$512 -
$774$735 -
$1,750$1,663 -
$880$695 -
$2,328Apache Iceberg: The Definitive Guide: Data Lakehouse Functionality, Performance, and Scalability on the Data Lake (Paperback)
-
$620$434 -
$1,074$1,020 -
$768$730 -
$594$564
相關主題
商品描述
Learn how to deal with time series data and how to model it using deep learning and take your skills to the next level by mastering PyTorch using different Python recipes
Key Features
- Learn the fundamentals of time series analysis and how to model time series data using deep learning
- Explore the world of deep learning with PyTorch and build advanced deep neural networks
- Gain expertise in tackling time series problems, from forecasting future trends to classifying patterns and anomaly detection
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description
Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise.
This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You'll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you'll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions.
By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.
What you will learn
- Grasp the core of time series analysis and unleash its power using Python
- Understand PyTorch and how to use it to build deep learning models
- Discover how to transform a time series for training transformers
- Understand how to deal with various time series characteristics
- Tackle forecasting problems, involving univariate or multivariate data
- Master time series classification with residual and convolutional neural networks
- Get up to speed with solving time series anomaly detection problems using autoencoders and generative adversarial networks (GANs)
Who this book is for
If you're a machine learning enthusiast or someone who wants to learn more about building forecasting applications using deep learning, this book is for you. Basic knowledge of Python programming and machine learning is required to get the most out of this book.
Table of Contents
- Getting Started with Time Series
- Getting Started with PyTorch
- Univariate Time Series Forecasting
- Forecasting with PyTorch Lightning
- Global Forecasting Models
- Advanced Deep Learning Architectures for Time Series Forecasting
- Probabilistic Time Series Forecasting
- Deep Learning for Time Series Classification
- Deep Learning for Time Series Anomaly Detection
商品描述(中文翻譯)
學習如何處理時間序列資料,並使用深度學習進行建模,通過掌握不同的Python配方,將您的技能提升到更高的水平。
主要特點:
- 學習時間序列分析的基礎知識,以及如何使用深度學習對時間序列資料進行建模。
- 探索使用PyTorch進行深度學習,並構建高級深度神經網絡。
- 熟練處理時間序列問題,從預測未來趨勢到分類模式和異常檢測。
- 購買印刷版或Kindle電子書,可獲得免費PDF電子書。
書籍描述:
大多數組織在其過程中展示出時間相依結構,包括金融等領域。通過利用時間序列分析和預測,這些組織可以做出明智的決策並優化其業績。準確的預測有助於減少不確定性,並實現更好的運營計劃。與傳統的預測方法不同,深度學習可以處理大量的資料並幫助推導出複雜的模式。儘管其日益重要,但要充分利用深度學習,需要相當的技術專長。
本書通過易於遵循的代碼配方,指導您將深度學習應用於時間序列資料。您將涵蓋時間序列問題,如預測、異常檢測和分類。本書還將展示如何使用不同的深度神經網絡架構(包括卷積神經網絡(CNN)或Transformer)解決這些問題。隨著進展,您將使用PyTorch(一個基於Python的流行深度學習框架)構建可投入生產的預測解決方案。
通過閱讀本書,您將學習如何使用PyTorch生態系統,利用深度學習解決不同的時間序列任務。
您將學到:
- 掌握時間序列分析的核心,並使用Python發揮其威力。
- 理解PyTorch以及如何使用它構建深度學習模型。
- 發現如何將時間序列轉換為訓練Transformer模型。
- 理解如何處理不同的時間序列特徵。
- 解決預測問題,包括單變量或多變量資料。
- 掌握使用殘差和卷積神經網絡進行時間序列分類。
- 快速解決時間序列異常檢測問題,使用自編碼器和生成對抗網絡(GAN)。
本書適合對機器學習感興趣的人,或者想要了解如何使用深度學習構建預測應用程序的人。需要具備Python編程和機器學習的基礎知識,以充分利用本書。
目錄:
1. 開始使用時間序列
2. 開始使用PyTorch
3. 單變量時間序列預測
4. 使用PyTorch Lightning進行預測
5. 全球預測模型
6. 用於時間序列預測的高級深度學習架構
7. 概率時間序列預測
8. 時間序列分類的深度學習
9. 時間序列異常檢測的深度學習