Data Architecture: A Primer for the Data Scientist: Big Data, Data Warehouse and Data Vault Paperback
暫譯: 數據架構:數據科學家的入門指南:大數據、數據倉庫與數據保險庫 平裝本
W.H. Inmon, Dan Linstedt
- 出版商: Morgan Kaufmann
- 出版日期: 2014-11-26
- 售價: $2,370
- 貴賓價: 9.5 折 $2,252
- 語言: 英文
- 頁數: 378
- 裝訂: Paperback
- ISBN: 012802044X
- ISBN-13: 9780128020449
-
相關分類:
大數據 Big-data
-
其他版本:
Data Architecture : A Primer for the Data Scientist, 2/e
相關主題
商品描述
Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can't be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist.
Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You'll be able to:
- Turn textual information into a form that can be analyzed by standard tools.
- Make the connection between analytics and Big Data
- Understand how Big Data fits within an existing systems environment
- Conduct analytics on repetitive and non-repetitive data
- Discusses the value in Big Data that is often overlooked, non-repetitive data, and why there is significant business value in using it
- Shows how to turn textual information into a form that can be analyzed by standard tools.
- Explains how Big Data fits within an existing systems environment
- Presents new opportunities that are afforded by the advent of Big Data
- Demystifies the murky waters of repetitive and non-repetitive data in Big Data
商品描述(中文翻譯)
今天,隨著大數據現象的興起,全球都在努力培養和教育數據科學家。每個人都在深入研究這項技術,但沒有人關注大數據如何融入現有系統(數據倉儲系統)的更大架構圖景。從更大的視角來看大數據的適用性,能為數據科學家提供必要的背景,幫助他們理解各個部分如何組合在一起。大多數關於大數據的參考資料僅關注於一個微小的部分,而忽略了整體。直到收集到的數據能夠納入現有的框架或架構中,才能充分發揮其潛力。《Data Architecture a Primer for the Data Scientist》探討了大數據如何與現有的信息基礎設施相結合的更大架構圖景,這是數據科學家必須了解的重要主題。
本書基於多年的實踐經驗,使用了大量的例子和易於理解的框架,W.H. Inmon 和 Daniel Linstedt 定義了數據架構的重要性,以及如何有效地利用數據架構來駕馭現有系統中的大數據。您將能夠:
- 將文本信息轉換為可以被標準工具分析的形式。
- 建立分析與大數據之間的聯繫。
- 理解大數據如何融入現有系統環境。
- 對重複性和非重複性數據進行分析。
- 討論大數據中常被忽視的價值,即非重複性數據,以及為什麼使用它會帶來顯著的商業價值。
- 展示如何將文本信息轉換為可以被標準工具分析的形式。
- 解釋大數據如何融入現有系統環境。
- 提出大數據出現所帶來的新機會。
- 解釋大數據中重複性和非重複性數據的複雜性。