Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems
暫譯: 深度學習方法論的趨勢:演算法、應用與系統
Piuri, Vincenzo, Raj, Sandeep, Genovese, Angelo
- 出版商: Academic Press
- 出版日期: 2020-11-16
- 售價: $5,420
- 貴賓價: 9.5 折 $5,149
- 語言: 英文
- 頁數: 308
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0128222263
- ISBN-13: 9780128222263
-
相關分類:
DeepLearning、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more.
In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.
商品描述(中文翻譯)
《深度學習方法的趨勢:演算法、應用與系統》涵蓋了深度學習方法,如神經網絡、深度信念網絡、遞迴神經網絡、卷積神經網絡、深度自編碼器和深度生成網絡,這些方法已成為強大的計算模型。各章節詳細闡述了這些模型,這些模型在處理大量數據的多種應用中顯示出顯著的成功,因為它們能夠提取複雜的隱藏特徵並在無監督環境中學習有效的表示。各章節探討了基於深度學習的演算法在多種應用中的應用,包括生物醫學與健康資訊學、計算機視覺、影像處理等。
近年來,許多強大的演算法被開發出來,用於匹配數據中的模式並對未來事件進行預測。深度學習的主要優勢在於處理大數據分析,以便進行更好的分析和自適應演算法來處理更多數據。深度學習方法可以處理多層次的表示,系統學會對原始數據進行更高層次的抽象表示。早期,開發特定應用的特定模型通常需要領域專家,但最近在表示學習演算法方面的進展使得各個學科領域的研究人員能夠自動學習給定數據的模式和表示,以便開發特定模型。