The Deep Learning Revolution (Hardcover)
暫譯: 深度學習革命 (精裝版)
Terrence J. Sejnowski
- 出版商: MIT
- 出版日期: 2018-10-23
- 售價: $1,050
- 貴賓價: 9.5 折 $998
- 語言: 英文
- 頁數: 352
- 裝訂: Hardcover
- ISBN: 026203803X
- ISBN-13: 9780262038034
-
相關分類:
DeepLearning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
類神經網路設計 (Neural Network Design)$720$684 -
Learning From Data (Hardcover)$1,200$1,176 -
Real-Time Communication with WebRTC: Peer-to-Peer in the Browser (Paperback)$1,100$1,045 -
類神經網路導論 : 原理與應用, 2/e$560$549 -
Introduction to Statistical Machine Learning(美國原版)$4,150$3,943 -
$708About Face4 (交互設計精髓) -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
$658深度捲積網絡 : 原理與實踐 -
$1,188Deep Reinforcement Learning Hands-On -
白話深度學習與 TensorFlow$480$379 -
AI+大數據 -- 用 TensorFlow 玩轉大數據與量化交易$650$553 -
Python 量化投資縱橫金融:從程式到現金之路$690$587 -
$474圖解深度學習與神經網絡:從張量到 TensorFlow 實現 -
IBM Watson Projects: Eight exciting projects that put artificial intelligence into practice for optimal business performance$1,770$1,682 -
Practical PHP 7, MySQL 8, and MariaDB Website Databases: A Simplified Approach to Developing Database-Driven Websites$2,033$1,926 -
Reinforcement Learning: An Introduction, 2/e (Hardcover)$1,750$1,715 -
$708Boost 程序庫完全開發指南 ― 深入 C++ ”準”標準庫, 5/e -
$709奔跑吧 Linux 內核 (捲1):基礎架構, 2/e -
$658奔跑吧 Linux 內核入門篇, 2/e -
$560奔跑吧 Linux 內核 (捲2):調試與案例分析, 2/e -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$509 -
$690MATLAB 2020 信號處理從入門到精通 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
既會用也了解:最新一代 5G 核心技術加強版 (過版書特價)$1,200$840
相關主題
商品描述
How deep learning―from Google Translate to driverless cars to personal cognitive assistants―is changing our lives and transforming every sector of the economy.
The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.
Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
商品描述(中文翻譯)
如何深度學習——從 Google Translate 到無人駕駛汽車,再到個人認知助手——正在改變我們的生活並轉型每個經濟領域。
深度學習革命為我們帶來了無人駕駛汽車、大幅改善的 Google Translate、與 Siri 和 Alexa 的流暢對話,以及來自紐約證券交易所自動化交易的巨額利潤。深度學習網絡能夠比專業撲克玩家更好地打撲克,並擊敗圍棋世界冠軍。在這本書中,Terry Sejnowski 解釋了深度學習如何從一個深奧的學術領域轉變為信息經濟中的顛覆性技術。
Sejnowski 在深度學習的創立中扮演了重要角色,他是1980年代一小群挑戰當時主流邏輯與符號基礎的人工智慧(AI)研究者之一。Sejnowski 和其他人所開發的新版本 AI,成為深度學習,則是以數據為燃料。深度網絡以與嬰兒體驗世界相同的方式從數據中學習,從新鮮的視角開始,逐漸獲得在新環境中導航所需的技能。學習算法從原始數據中提取信息;信息可以用來創造知識;知識是理解的基礎;理解導致智慧。總有一天,無人駕駛汽車會比你更了解道路,並以更高的技術駕駛;深度學習網絡將診斷你的疾病;個人認知助手將增強你微薄的人類大腦。自然花了數百萬年進化出人類智慧;人工智慧的發展軌跡則以數十年為單位。Sejnowski 為我們準備了一個深度學習的未來。
