Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference (Hardcover)
暫譯: 神經資訊處理系統進展 16:2003年會議論文集(精裝本)

Sebastian Thrun, Lawrence K. Saul, Bernhard Schlkopf

  • 出版商: MIT
  • 出版日期: 2004-06-04
  • 售價: $1,800
  • 貴賓價: 9.5$1,710
  • 語言: 英文
  • 頁數: 1728
  • 裝訂: Hardcover
  • ISBN: 0262201526
  • ISBN-13: 9780262201520
  • 相關分類: 人工智慧DeepLearning
  • 立即出貨(限量) (庫存=4)

買這商品的人也買了...

相關主題

商品描述

Description:

The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.

Sebastian Thrun is Associate Professor in the Computer Science Department at Stanford University and Director of the Stanford AI Lab.

Lawrence K. Saul is Assistant Professor in the Department of Computer and Information Science at the University of Pennsylvania and General Chair of the 2004 NIPS conference.

Bernhard Schölkopf is Director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, and Professor at the Technical University in Berlin.

 

 

Table of Contents:

 

Preface xvii
 
  NIPS Committees xxi
 
  Reviewers xxiii
 
I Algorithms and Architectures  
 
  Efficient Multiscale Sampling from Products of Gaussian Mixtures
Alexander T. Ihler, Erik B. Sudderth, William T. Freeman and Alan S. Willsky
1
 
  Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic User Profiles
Mark Girolami and Ata Kaban
9
 
  Hierarchical Topic Models and the Nested Chinese Restaurant Process
David M. Blei, Thomas L. Griffiths, Joshua B. Tenenbaum and Michael I. Jordan
17
 
  Max-Margin Markov Networks
Benjamin Taskar, Carlos Guestrin and Daphne Koller
25
 
  Invariant Pattern Recognition by Semi-Definite Programming Machines
Thore Graepel and Ralf Herbrich
33
 
  Learning a Distance Metric from Relative Comparisons
Matthew Schultz and Thorsten Joachims
41
 
  1-norm Support Vector Machines
Ji Zhu, Saharon Rosset, Trevor Hastie and Robert Tibshirani
49
 
  Image Reconstruction by Linear Programming
Koji Tsuda and Gunnar Rätsch
57
 
  Multiple-Instance Learning via Disjunctive Programming Boosting
Stuart Andrews and Thomas Hofmann
65
 
  Convex Methods for Transduction
Tijl De Bie and Nello Cristianini
73
 
  Kernel Dimensionality Reduction for Supervised Learning
Kenji Fukumizu, Francis R. Bach and Michael I. Jordan
81
 
  Clustering with the Connectivity Kernel
Bernd Fischer, Volker Roth and Joachim M. Buhmann
89
 
  Efficient and Robust Feature Extraction by Maximum Margin Criterion
Haifeng Li, Tao Jiang and Keshu Zhang
97
 
  Sparse Greedy Minimax Probability Machine Classification
Thomas Strohmann, Andrei Belitski, Greg Grudic and Dennis DeCoste
105
 
  Sequential Bayesian Kernel Regression
Jaco Vermaak, Simon J. Godsill and Arnaud Doucet
113
 
  Fast Feature Selection from Microarray Expression Data via Multiplicative Large Margin Algorithms
Claudio Gentile
121
 
  Dynamical Modeling with Kernels for Nonlinear Time Series Prediction
Liva Ralaivola and Florence d'Alché-Buc
129
 
  Extreme Components Analysis
Max Welling, Felix Agakov and Christopher K. I. Williams
137
 
  Linear Dependent Dimensionality Reduction
Nathan Srebro and Tommi Jaakkola
145
 
  Locality Preserving Projections
Xiaofei He and Partha Niyogi
153
 
  Optimal Manifold Representation of Data: An Information Theoretic Approach
Denis V. Chigirev and William Bialek
161
 
  Ranking on Data Manifolds
Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet and Bernhard Schölkopf
169
 
  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering
Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux and Marie Ouimet
177
 
  Pairwise Clustering and Graphical Models
Noam Shental, Assaf Zomet, Tomer Hertz and Yair Weiss
185
 
  Tree-structured Approximations by Expectation Propagation
Thomas Minka and Yuan Qi
193
 
  The IM Algorithm: A Variational Approach to Information Maximization
David Barber and Felix Agakov
201
 
  Iterative Scaled Trust-Region Learning in Krylov Subspaces via Pearlmutter's Implicit Sparse Hessian-Vector Multiply
Eiji Mizutani and James W. Demmel
209
 
  Large Scale Online Learning
Léon Bottou and Yann Le Cun
217
 
  Online Classification on a Budget
Koby Crammer, Jaz Kandola and Yoram Singer
225
 
  Online Learning via Global Feedback for Phrase Recognition
Xavier Carreras and Lluis Marquez
233
 
  Sparse Representation and Its Applications in Blind Source Separation
Yuanqing Li, Andrzej Cichocki, Shun-ichi Amari, Sergei Shishkin, Jianting Cao and Fanji Gu
241
 
  Perspectives on Sparse Bayesian Learning
David Wipf, Jason Palmer and Bhaskar D. Rao
249
 
  Semi-Supervised Learning with Trees
Charles Kemp, Thomas L. Griffiths, Sean Stromsten and Joshua B. Tenenbaum
257
 
  Efficient Exact k-NN and Nonparametric Classification in High Dimensions
Ting Liu, Andrew W. Moore and Alexander Gray
265
 
  Nonstationary Covariance Functions for Gaussian Process Regression
Christopher J. Paciorek and Mark J. Schervish
273
 
  Learning the k in k-means
Greg Hamerly and Charles Elkan
281
 
  Finding the M Most Probable Configurations in Arbitrary Graphical Models
Chen Yanover and Yair Weiss
289
 
  Non-linear CCA and PCA by Alignment of Local Models
Jakob J. Verbeek, Sam T. Roweis and Nikos Vlassis
297
 
  Learning Spectral Clustering
Francis R. Bach and Michael I. Jordan
305
 
  AUC Optimization vs. Error Rate Minimization
Corinna Cortes and Mehryar Mohri
313
 
  Learning with Local and Global Consistency
Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston and Bernhard Schölkopf
321
 
  Gaussian Process Latent Variable Models for Visualization of High Dimensional Data
Neil D. Lawrence
329
 
  Warped Gaussian Processes
Edward Snelson, Carl Edward Rasmussen and Zoubin Ghahramani
337
 
  Can We Learn to Beat the Best Stock
Allan Borodin, Ran El-Yaniv and Vincent Gogan
345
 
  Approximate Expectation Maximization
Tom Heskes, Onno Zoeter and Wim Wiegerinck
353
 
  Linear Response for Approximate Inference
Max Welling and Yee Whye Teh
361
 
  Semidefinite Relaxations for Approximate Inference on Graphs with Cycles
Martin Wainwright and Michael I. Jordan
369
 
  Approximability of Probability Distributions
Alina Beygelzimer and Irina Rish
377
 
  Denoising and Untangling Graphs Using Degree Priors
Quaid D. Morris and Brendan J. Frey
385
 
  On the Concentration of Expectation and Approximate Inference in Layered Networks
XuanLong Nguyen and Michael I. Jordan
393
 
  Inferring State Sequences for Non-linear Systems with Embedded Hidden Markov Models
Radford M. Neal, Matthew J. Beal and Sam T. Roweis
401
 
  Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis
Pedro F. Felzenszwalb, Daniel P. Huttenlocher and Jon M. Kleinberg
409
 
  Wormholes Improve Contrastive Divergence
Geoffrey Hinton, Max Welling and Andriy Mnih
417
 
  Sample Propagation
Mark A. Paskin
425
 
  Generalised Propagation for Fast Fourier Transforms with Partial or Missing Data
Amos J. Storkey
433
 
  Laplace Propagation
Alexander Smola, Vishy Vishwanathan and Eleazar Eskin
441
 
  Learning to Find Pre-Images
Geokhan H. Bakir, Jason Weston and Bernhard Schölkopf
449
 
  Semi-Definite Programming by Perceptron Learning
Thore Graepel, Ralf Herbrich, Andriy Kharechko and John Shawe-Taylor
457
 
  Computing Gaussian Mixture Models with EM Using Equivalence Constraints
Noam Shental, Aharon Bar-Hillel, Tomer Hertz and Daphna Weinshall
465
 
  Feature Selection in Clustering Problems
Volker Roth and Tilman Lange
473
 
  An Iterative Improvement Procedure for Hierarchical Clustering
David Kauchak and Sanjoy Dasgupta
481
 
  Identifying Structure across Pre-Partitioned Data
Zvika Marx, Ido Dagan and Eli Shamir
489
 
  Log-Linear Models for Label Ranking
Ofer Dekel, Christopher Manning and Yoram Singer
497
 
  Minimax Embeddings
Matthew Brand
505
 
  No Unbiased Estimator of the Variance of K-Fold Cross-Validation
Yoshua Bengio and Yves Grandvalet
513
 
  Bias-Corrected Bootstrap and Model Uncertainty
Harald Steck and Tommi Jaakkola
521
 
  Probability Estimates for Multi-Class Classification by Pairwise Coupling
Ting-Fan Wu, Chih-Jen Lin and Ruby C. Weng
529
 
  Necessary Intransitive Likelihood-Ratio Classifiers
Gang Ji and Jeff Bilmes
537
 
  Classification with Hybrid Generative/Discriminative Models
Rajat Raina, Yirong Shen, Andrew Y. Ng and Andrew McCallum
545
 
  A Model for Learning the Semantics of Pictures
Victor Lavrenko, R. Manmatha and Jiwoon Jeon
553
 
  Algorithms for Interdependent Security Games
Michael Kearns and Luis Ortiz
561
 
II Applications  
 
  Fast Embedding of Sparse Similarity Graphs
John C. Platt
571
 
  GPPS: A Gaussian Process Positioning System for Cellular Networks
Anton Schwaighofer, Marian Grigoras, Volker Tresp and Clemens Hoffmann
579
 
  An Autonomous Robotic System for Mapping Abandoned Mines
David Ferguson, Aaron Morris, Dirk Hähnel, Christopher Baker, Zachary Omohundro, Carlos Reverte, Scott Thayer, William Whittaker, Wolfram Burgard and Sebastian Thrun
587
 
  Semi-supervised Protein Classification Using Cluster Kernels
Jason Weston, Christina Leslie, Dengyong Zhou, André Elisseeff and William S. Noble
595
 
  Statistical Debugging of Sampled Programs
Alice X. Zheng, Michael I. Jordan, Ben Liblit and Alex Aiken
603
 
  Markov Models for Automated ECG Interval Analysis
Nicholas P. Hughes, Lionel Tarassenko and Stephen Roberts
611
 
  Parameterized Novelty Detectors for Environmental Sensor Monitoring
Cynthia Archer, Todd K. Leen and Antonio Baptista
619
 
  Modeling User Rating Profiles for Collaborative Filtering
Benjamin Marlin
627
 
  Application of SVMs for Colour Classification and Collision Detection with AIBO Robots
Michael J. Quinlan, Stephan K. Chalup and Richard H. Middleton
635
 
  Kernels for Structured Natural Language Data
Jun Suzuki, Yutaka Sasaki and Eisaku Maeda
643
 
  A Fast Multi-Resolution Method for Detection of Significant Spatial Disease Clusters
Daniel B. Neill and Andrew W. Moore
651
 
  Link Prediction in Relational Data
Benjamin Taskar, Ming-Fai Wong, Pieter Abbeel and Daphne Koller
659
 
  Unsupervised Color Decomposition of Histologically Stained Tissue Samples
Andrew Rabinovich, Sameer Agarwal, Casey Laris, Jeffrey H. Price and Serge J. Belongie
667
 
  ICA-based Clustering of Genes from Microarray Expression Data
Su-In Lee and Serafim Batzoglou
675
 
  Gene Expression Clustering with Functional Mixture Models
Darya Chudova, Christopher Hart, Eric Mjolsness and Padhraic Smyth
683
 
III Brain Imaging  
 
  Reconstructing MEG Sources with Unknown Correlations
Maneesh Sahani and Srikantan Nagarajan
693
 
  Different Cortico-Basal Ganglia Loops Specialize in Reward Prediction at Different Time Scales
Saori C. Tanaka, Kenji Doya, Go Okada, Kazutaka Ueda, Yasumasa Okamoto and Shigeto Yamawaki
701
 
  Training fMRI Classifiers to Discriminate Cognitive States across Multiple Subjects
Xuerui Wang, Rebecca Hutchinson and Tom M. Mitchell
709
 
  Nonlinear Filtering of Electron Micrographs by Means of Support Vector Regression
Roland Vollgraf, Michael Scholz, Ian A. Meinertzhagen and Klaus Obermayer
717
 
  Impact of an Energy Normalization Transform on the Performance of the LF-ASD Brain Computer Interface
Yu Zhou, Steven G. Mason and Gary E. Birch
725
 
  Increase Information Transfer Rates in BCI by CSP Extension to Multi-class
Guido Dornhege, Benjamin Blankertz, Gabriel Curio and Klaus-Robert Müller
733
 
  Subject-Independent Magnetoencephalographic Source Localization by a Multilayer Perceptron
Sung C. Jun and Barak A. Pearlmutter
741
 
IV Control and Reinforcement Learning  
 
  Gaussian Processes in Reinforcement Learning
Carl Edward Rasmussen and Malte Kuss
751
 
  Applying Metric-Trees to Belief-Point POMDPs
Jolette Pineau, Geoffrey J. Gordon and Sebastian Thrun
759
 
  ARA*: Anytime A* with Provable Bounds on Sub-Optimality
Maxim Likhachev, Geoffrey J. Gordon and Sebastian Thrun
767
 
  Approximate Planning in POMDPs with Macro-Actions
Georgios Theocharous and Leslie Pack Kaelbling
775
 
  Envelope-based Planning in Relational MDPs
Natalia H. Gardiol and Leslie Pack Kaelbling
783
 
  An MDP-Based Approach to Online Mechanism Design
David C. Parkes and Satinder P. Singh
791
 
  Autonomous Helicopter Flight via Reinforcement Learning
Andrew Y. Ng, H. Jin Kim, Michael I. Jordan and Shankar Sastry
799
 
  All learning is Local: Multi-agent Learning in Global Reward Games
Yu-Han Chang, Tracey Ho and Leslie Pack Kaelbling
807
 
  How to Combine Expert (and Novice) Advice when Actions Impact the Environment?
Daniela Pucci de Farias and Nimrod Megiddo
815
 
  Bounded Finite State Controllers
Pascal Poupart and Craig Boutilier
823
 
  Policy Search by Dynamic Programming
J. Andrew Bagnell, Sham Kakade, Andrew Y. Ng and Jeff Schneider
831
 
  Robustness in Markov Decision Problems with Uncertain Transition Matrices
Arnab Nilim and Laurent El Ghaoui
839
 
  Approximate Policy Iteration with a Policy Language Bias
Alan Fern, Sungwook Yoon and Robert Givan
847
 
  A Nonlinear Predictive State Representation
Matthew R. Rudary and Satinder P. Singh
855
 
  Learning Near-Pareto-Optimal Conventions in Polynomial Time
XiaoFeng Wang and Tuomas Sandholm
863
 
  Extending Q-Learning to General Adaptive Multi-Agent Systems
Gerald Tesauro
871
 
  Auction Mechanism Design for Multi-Robot Coordination
Curt Bererton, Geoffrey J. Gordon and Sebastian Thrun
879
 
  Distributed Optimization in Adaptive Networks
Ciamac C. Moallemi and Benjamin Van Roy
887
 
  Linear Program Approximations for Factored Continuous-State Markov Decision Processes
Milos Hauskrecht and Branislav Kveton
895
 
V Cognitive Science and Artificial Intelligence  
 
  Insights from Machine Learning Applied to Human Visual Classification
Arnulf B. A. Graf and Felix A. Wichmann
905
 
  Sensory Modality Segregation
Virginia de Sa
913
 
  Reasoning about Time and Knowledge in Neural Symbolic Learning Systems
Artur S. d'Avila Garcez and Luis C. Lamb
921
 
  Learning a World Model and Planning with a Self-Organizing, Dynamic Neural System
Marc Toussaint
929
 
  An MCMC-Based Method of Comparing Connectionist Models in Cognitive Science
Woojae Kim, Daniel J. Navarro, Mark A. Pitt and In Jae Myung
937
 
  Perception of the Structure of the Physical World Using Unknown Multimodal Sensors and Effectors
D. Philipona, J. Kevin O'Regan, J.-P. Nadal and Olivier Coenen
945
 
  From Algorithmic to Subjective Randomness
Thomas L. Griffiths and Joshua B. Tenenbaum
953
 

商品描述(中文翻譯)

描述:
年度神經資訊處理(NIPS)會議是神經計算的旗艦會議。它吸引了來自不同領域的與會者,包括物理學家、神經科學家、數學家、統計學家和計算機科學家。演講內容跨學科,涵蓋算法、學習理論、認知科學、神經科學、大腦成像、視覺、語音和信號處理、強化學習與控制、新興技術及應用。提交的論文中只有三成被接受在NIPS上發表,因此質量極高。本卷包含2003年會議上所有發表的論文。

Sebastian Thrun是斯坦福大學計算機科學系的副教授,也是斯坦福人工智慧實驗室的主任。

Lawrence K. Saul是賓夕法尼亞大學計算與資訊科學系的助理教授,並擔任2004年NIPS會議的總主席。

Bernhard Schölkopf是德國圖賓根的馬克斯·普朗克生物控制論研究所的主任,並且是柏林工業大學的教授。

目錄:
前言 xvii

NIPS 委員會 xxi

審稿人 xxiii

I 算法與架構

從高斯混合產品中有效的多尺度取樣
Alexander T. Ihler, Erik B. Sudderth, William T. Freeman 和 Alan S. Willsky 1

馬可夫鏈的簡單混合:動態用戶檔案的分佈建模
Mark Girolami 和 Ata Kaban 9

層次主題模型與嵌套的中國餐廳過程
David M. Blei, Thomas L. Griffiths, Joshua B. Tenenbaum 和 Michael I. Jordan 17

最大邊際馬可夫網絡
Benjamin Taskar, Carlos Guestrin 和 Daphne Koller 25

通過半正定規劃機器進行不變模式識別
Thore Graepel 和 Ralf Herbrich 33

從相對比較中學習距離度量
Matthew Schultz 和 Thorsten Joachims 41

1-範數支持向量機
Ji Zhu, Saharon Rosset, Trevor Hastie 和 Robert Tibshirani 49

通過線性規劃進行圖像重建
Koji Tsuda 和 Gunnar Rätsch 57

通過析取編程增強的多實例學習
Stuart Andrews 和 Thomas Hofmann 65

轉導的凸方法
Tijl De Bie 和 Nello Cristianini 73

監督學習的核維度縮減
Kenji Fukumizu, Francis R. Bach 和 Michael I. Jordan 81

使用連通性核的聚類
Bernd Fischer, Volker Roth 和 Joachim M. Buhmann 89

通過最大邊際準則進行高效且穩健的特徵提取
Haifeng Li, Tao Jiang 和 Keshu Zhang 97

稀疏貪婪最小化概率機分類
Thomas Strohmann, Andrei Belitski, Greg Grudic 和 Dennis DeCoste 105

序列貝葉斯核回歸
Jaco Vermaak, Simon J. Godsill 和 Arnaud Doucet 113

通過乘法大邊際算法從微陣列表達數據中快速選擇特徵
Claudio Gentile 121

使用核進行非線性時間序列預測的動態建模
Liva Ralaivola 和 Florence d'Alché-Buc 129

極端成分分析
Max Welling, Felix Agakov 和 Christopher K. I. Williams 137

線性依賴維度縮減
Nathan Srebro 和 Tommi Jaakkola 145

保持局部性的投影
Xiaofei He 和 Partha Niyogi 153

數據的最佳流形表示:信息理論方法
Denis V. Chigirev 和 William Bialek 161

數據流形上的排名
Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet 和 Bernhard Schölkopf 169

樣本外擴展 LLE、Isomap、MDS、特徵映射和光譜聚類
Yoshua Bengio, Jean-François Paiement, Pascal Vincen