Causal Analysis: Impact Evaluation and Causal Machine Learning with Applications in R
Huber, Martin
- 出版商: MIT
- 出版日期: 2023-08-01
- 售價: $2,210
- 貴賓價: 9.5 折 $2,100
- 語言: 英文
- 頁數: 336
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0262545918
- ISBN-13: 9780262545914
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
A comprehensive and cutting-edge introduction to quantitative methods of causal analysis, including new trends in machine learning. Reasoning about cause and effect--the consequence of doing one thing versus another--is an integral part of our lives as human beings. In an increasingly digital and data-driven economy, the importance of sophisticated causal analysis only deepens. Presenting the most important quantitative methods for evaluating causal effects, this textbook provides graduate students and researchers with a clear and comprehensive introduction to the causal analysis of empirical data. Martin Huber's accessible approach highlights the intuition and motivation behind various methods while also providing formal discussions of key concepts using statistical notation. Causal Analysis covers several methodological developments not covered in other texts, including new trends in machine learning, the evaluation of interaction or interference effects, and recent research designs such as bunching or kink designs.
- Most complete and cutting-edge introduction to causal analysis, including causal machine learning
- Clean presentation of rigorous material avoids extraneous detail and emphasizes conceptual analogies over statistical notation
- Supplies a range of applications and practical examples using R
商品描述(中文翻譯)
一本全面且尖端的介紹量化因果分析方法的教材,包括機器學習的新趨勢。
在我們作為人類的生活中,推理因果關係──做一件事與做另一件事的後果──是不可或缺的一部分。在日益數位化和數據驅動的經濟中,對於複雜因果分析的重要性只會加深。這本教材提供了評估因果效應的最重要的量化方法,為研究生和研究人員提供了清晰而全面的實證數據因果分析入門。Martin Huber的易於理解的方法突出了各種方法背後的直覺和動機,同時使用統計符號提供了關鍵概念的正式討論。《因果分析》涵蓋了其他教材未涵蓋的幾個方法論發展,包括機器學習的新趨勢、交互作用或干擾效應的評估,以及最近的研究設計,如成束或彎曲設計。
- 最全面和尖端的因果分析入門,包括因果機器學習
- 清晰呈現嚴謹的材料,避免冗餘細節,強調概念類比而非統計符號
- 提供使用R的各種應用和實際示例
作者簡介
Martin Huber is Professor of Applied Econometrics at the University of Fribourg, Switzerland, where his research comprises both methodological and applied contributions in the fields of causal analysis and policy evaluation, machine learning, statistics, econometrics, and empirical economics.
作者簡介(中文翻譯)
Martin Huber是瑞士弗里堡大學應用計量經濟學教授,他的研究涵蓋因果分析和政策評估、機器學習、統計學、計量經濟學和實證經濟學等領域,既包括方法論性的貢獻,也包括應用性的貢獻。