Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques
暫譯: 基於內容的影像分類:使用穩健特徵提取技術的高效機器學習
Das, Rik
- 出版商: CRC
- 出版日期: 2020-12-18
- 售價: $4,560
- 貴賓價: 9.5 折 $4,332
- 語言: 英文
- 頁數: 180
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 036737160X
- ISBN-13: 9780367371609
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems.
The book offers comprehensive coverage of the most essential topics, including:
- Image feature extraction with novel handcrafted techniques (traditional feature extraction)
- Image feature extraction with automated techniques (representation learning with CNNs)
- Significance of fusion-based approaches in enhancing classification accuracy
- MATLAB(R) codes for implementing the techniques
- Use of the Open Access data mining tool WEKA for multiple tasks
The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey.
Please visit the author's website for any further guidance at https: //www.rikdas.com/
商品描述(中文翻譯)
《基於內容的影像分類:使用穩健特徵提取技術的高效機器學習》是一本關於研究珍貴影像數據的綜合指南。社會科學研究網絡顯示,65%的人是視覺學習者。Hyerle(2000)提供的研究數據清楚顯示,人類大腦中90%的信息是視覺的。因此,腦中處理視覺信息的速度是基於文本信息的60,000倍(3M公司,2001)。最近,由於社交網絡平台的普及,我們見證了與影像對話的顯著增長。擁抱影像數據使用的另一個原因是高解析度手機相機的普遍可用性。影像數據在醫學科學、媒體、體育、遙感等多樣化應用領域的廣泛使用,促使了對優化影像內容的存檔、維護和檢索進一步研究的需求,以利用數據驅動的決策制定。本書展示了幾種影像處理技術,以將影像數據表示為所需格式以進行信息識別。它討論了機器學習和深度學習在識別和分類適當影像數據中的應用,這對設計自動化決策支持系統非常有幫助。
本書全面涵蓋了最重要的主題,包括:
- 使用新穎手工技術的影像特徵提取(傳統特徵提取)
- 使用自動化技術的影像特徵提取(使用CNN的表示學習)
- 融合方法在提高分類準確性中的重要性
- 實現技術的MATLAB(R)代碼
- 使用開放存取數據挖掘工具WEKA進行多項任務
本書旨在為有志的研究者、技術專家、工程學生以及希望開始其計算機視覺之旅的機器學習/深度學習愛好者提供指導。讀者將清楚了解將影像數據轉化為有價值的洞察生成手段所需的基本要素。讀者將學習必要的編碼技術,以提出新穎的機制和顛覆性的方法。提供的WEKA指南對於那些對機器學習算法編碼不熟悉的人非常有幫助。WEKA工具幫助學習者只需點擊一下按鈕即可實現機器學習算法。因此,本書將成為您機器學習之旅的踏腳石。
如需進一步指導,請訪問作者的網站 https://www.rikdas.com/
作者簡介
Rik Das is a PhD (Tech.) and M.Tech. in Information Technology from the University of Calcutta, India. He is also a B.E. in Information Technology from the University of Burdwan, India. Rik has filed and published two Indian patents consecutively during the year 2018 and 2019 and has over 40 International publications till date. He has collaborated with professionals from leading multinational software companies and with Professors and researchers of Universities in India and abroad for research work in the domain of content based image classification. Rik has over 16 years of experience in research and academia and is currently an Assistant Professor for the Program of Information Technology at Xavier Institute of Social Service (XISS), Ranchi, India.
Rik is appointed as a Distinguished Speaker of the Association of Computing Machinery (ACM), New York, USA. He is featured in uLektz Wall of Fame as one of the "Top 50 Tech Savvy Academicians in Higher Education across India" for the year 2019. He is also a Member of International Advisory Committee of AI-Forum, UK. Rik has founded a YouTube channel named 'Curious Neuron' to disseminate knowledge and information to larger communities in the domain of machine learning, research and development and open source programming languages.
作者簡介(中文翻譯)
Rik Das 擁有印度加爾各答大學的資訊科技博士(Tech.)及碩士(M.Tech.)學位。他同時也擁有印度布爾德萬大學的資訊科技學士(B.E.)學位。Rik 在2018年和2019年連續申請並發表了兩項印度專利,至今已發表超過40篇國際論文。他與多家領先的跨國軟體公司專業人士以及印度及國外的教授和研究人員合作,進行基於內容的圖像分類研究。Rik 在研究和學術界擁有超過16年的經驗,目前是印度朗齊的薩維爾社會服務學院(Xavier Institute of Social Service, XISS)資訊科技課程的助理教授。
Rik 被任命為美國紐約計算機協會(Association of Computing Machinery, ACM)的傑出演講者。他在2019年被uLektz的名人牆列為「印度高等教育中50位最具科技敏銳度的學者」之一。他也是英國AI-Forum的國際諮詢委員會成員。Rik 創立了一個名為「Curious Neuron」的YouTube頻道,旨在向更廣泛的社群傳播有關機器學習、研究與開發及開源程式語言的知識和資訊。