Python Machine Learning By Example
暫譯: Python 機器學習實例解析

Yuxi (Hayden) Liu

  • Python Machine Learning By Example-preview-1
  • Python Machine Learning By Example-preview-2
  • Python Machine Learning By Example-preview-3
  • Python Machine Learning By Example-preview-4
  • Python Machine Learning By Example-preview-5
  • Python Machine Learning By Example-preview-6
  • Python Machine Learning By Example-preview-7
  • Python Machine Learning By Example-preview-8
  • Python Machine Learning By Example-preview-9
  • Python Machine Learning By Example-preview-10
  • Python Machine Learning By Example-preview-11
  • Python Machine Learning By Example-preview-12
  • Python Machine Learning By Example-preview-13
  • Python Machine Learning By Example-preview-14
  • Python Machine Learning By Example-preview-15
  • Python Machine Learning By Example-preview-16
  • Python Machine Learning By Example-preview-17
  • Python Machine Learning By Example-preview-18
  • Python Machine Learning By Example-preview-19
  • Python Machine Learning By Example-preview-20
  • Python Machine Learning By Example-preview-21
  • Python Machine Learning By Example-preview-22
  • Python Machine Learning By Example-preview-23
  • Python Machine Learning By Example-preview-24
  • Python Machine Learning By Example-preview-25
  • Python Machine Learning By Example-preview-26
  • Python Machine Learning By Example-preview-27
  • Python Machine Learning By Example-preview-28
Python Machine Learning By Example-preview-1

買這商品的人也買了...

相關主題

商品描述

Key Features

  • Learn the fundamentals of machine learning and build your own intelligent applications
  • Master the art of building your own machine learning systems with this example-based practical guide
  • Work with important classification and regression algorithms and other machine learning techniques

Book Description

Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning.

This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms - they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques.

Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.

What you will learn

  • Exploit the power of Python to handle data extraction, manipulation, and exploration techniques
  • Use Python to visualize data spread across multiple dimensions and extract useful features
  • Dive deep into the world of analytics to predict situations correctly
  • Implement machine learning classification and regression algorithms from scratch in Python
  • Be amazed to see the algorithms in action
  • Evaluate the performance of a machine learning model and optimize it
  • Solve interesting real-world problems using machine learning and Python as the journey unfolds

商品描述(中文翻譯)

關鍵特點

- 學習機器學習的基本原理,並建立自己的智能應用程式
- 精通使用這本以範例為基礎的實用指南來構建自己的機器學習系統
- 使用重要的分類和回歸演算法及其他機器學習技術

書籍描述

數據科學和機器學習是當今技術界的一些熱門詞彙。對機器學習的重新興起興趣源於使數據挖掘和貝葉斯分析比以往更受歡迎的相同因素。這本書是您進入機器學習的入門點。

本書首先介紹機器學習和Python語言,並展示如何完成設置。接下來,您將學習所有重要的概念,例如探索性數據分析、數據預處理、特徵提取、數據可視化和聚類、分類、回歸及模型性能評估。通過各種包含的專案,您會發現掌握幾個重要機器學習演算法的機制是多麼有趣——它們不再像想像中那麼晦澀。此外,您將逐步指導從零開始構建自己的模型。到最後,您將對機器學習生態系統和應用機器學習技術的最佳實踐有一個全面的了解。

通過這本書,您將學會解決數據驅動的問題,並使用強大而簡單的語言Python來實現您的解決方案。一些有趣且易於跟隨的範例,例如新聞主題分類、垃圾郵件檢測、在線廣告點擊率預測、股票價格預測,將使您全神貫注,直到達成目標。

您將學到的內容

- 利用Python的強大功能來處理數據提取、操作和探索技術
- 使用Python可視化跨多維度的數據並提取有用的特徵
- 深入分析世界以正確預測情況
- 在Python中從零開始實現機器學習的分類和回歸演算法
- 看到演算法運行的驚人效果
- 評估機器學習模型的性能並進行優化
- 隨著旅程的展開,使用機器學習和Python解決有趣的現實世界問題