Large Deviations and Idempotent Probability
暫譯: 大偏差與冪等機率

Puhalskii, Anatolii

  • 出版商: CRC
  • 出版日期: 2020-12-18
  • 售價: $3,090
  • 貴賓價: 9.5$2,936
  • 語言: 英文
  • 頁數: 520
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367455293
  • ISBN-13: 9780367455293
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In the view of many probabilists, author Anatolii Puhalskii's research results stand among the most significant achievements in the modern theory of large deviations. In fact, his work marked a turning point in the depth of our understanding of the connections between the large deviation principle (LDP) and well-known methods for establishing weak convergence results.

Large Deviations and Idempotent Probability expounds upon the recent methodology of building large deviation theory along the lines of weak convergence theory. The author develops an idempotent (or maxitive) probability theory, introduces idempotent analogues of martingales (maxingales), Wiener and Poisson processes, and Ito differential equations, and studies their properties. The large deviation principle for stochastic processes is formulated as a certain type of convergence of stochastic processes to idempotent processes. The author calls this large deviation convergence.

The approach to establishing large deviation convergence uses novel compactness arguments. Coupled with the power of stochastic calculus, this leads to very general results on large deviation asymptotics of semimartingales. Large and moderate deviation asymptotics are treated in a unified manner.

Starting with the foundations of idempotent measure theory and culminating in applications to large deviation asymptotics of queueing systems, Large Deviations and Idempotent Probability offers an outstanding opportunity to examine both the development of a remarkable approach and recently discovered results as presented by one of the foremost leaders in the field.

商品描述(中文翻譯)

在許多機率學家的眼中,作者 Anatolii Puhalskii 的研究成果被認為是現代大偏差理論中最重要的成就之一。事實上,他的工作標誌著我們對大偏差原理(LDP)與建立弱收斂結果的知名方法之間聯繫的理解深度的轉折點。

《大偏差與冪等機率》闡述了沿著弱收斂理論建立大偏差理論的最新方法。作者發展了一種冪等(或最大化)機率理論,介紹了冪等的鞅(maxingales)、維納過程和泊松過程的冪等類比,以及伊藤微分方程,並研究它們的性質。隨機過程的大偏差原理被表述為隨機過程收斂到冪等過程的一種類型的收斂。作者稱之為大偏差收斂。

建立大偏差收斂的方法使用了新穎的緊緻性論證。結合隨機微積分的力量,這導致了對半鞅的大偏差漸近性非常一般的結果。大偏差和中等偏差的漸近性以統一的方式處理。

從冪等測度理論的基礎開始,最終應用於排隊系統的大偏差漸近性,《大偏差與冪等機率》提供了一個卓越的機會,來檢視這一卓越方法的發展以及由該領域的領軍人物之一所呈現的最新發現。