買這商品的人也買了...
-
$700$630 -
$2,350$2,233 -
$836PSP: A Self-Improvement Process for Software Engineers (Hardcover)
-
$880$748 -
$880$695 -
$1,320TSP-Leading a Development Team
-
$399CISSP All-in-One Exam Guide, 3/e
-
$650$514 -
$650$507 -
$800$760 -
$680$578 -
$650$507 -
$599$473 -
$680$578 -
$520$442 -
$420$357 -
$680$537 -
$590$502 -
$2,010$1,910 -
$850$765 -
$2,328$2,205 -
$350$315 -
$600$480 -
$450$356 -
$6,760$6,422
相關主題
商品描述
Description
Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers covers both the theory and applications of the different ways in which light interacts with matter.
* Introduces the reader to the nature of light
* Explains the key processes which occur as light travels through matter
* Discusses more advanced topics, such as the ways in which light interacts with charged particles, and quantum descriptions of the interaction mechanisms
Table of Contents
Preface.
1 Electromagnetic radiation.
1.1 Brief history of the interaction of light and matter.
1.2 Light in vacuum.
1.3 Matter–source of light.
2 Phenomenology of light propagation in matter.
2.1 Absorption of light.
2.2 Nonlinear absorption.
2.3 Index of refraction.
2.4 Optical phenomena in nonisotropic media.
2.5 Electric field effects.
2.6 Acousto-optic effects.
2.7 Magnetic field effects.
3 The interaction of light and matter.
3.1 Lorentz force law.
3.2 Motion of a charged particle in static electric and magnetic fields.
3.3 Motion of a bound electron in an electromagnetic field.
3.4 Radiation due to acceleration of charges.
3.5 Multipole radiation.
3.6 Scattering of a light wavepacket.
3.7 Cooling and trapping of atoms.
4 Magnetic phenomena, constitutive relations and plasmas.
4.1 Magnetic moments.
4.2 Magnetization.
4.3 Magnetic resonance.
4.4 Polarization and magnetization as source terms.
4.5 Atomistic derivation of macroscopic electromagnetism and the constitutive relations.
4.6 Microscopic polarizability and macroscopic polarization.
4.7 Dielectric relaxation.
4.8 Plasmas 275
5 Quantum description of absorption, emission and light scattering.
5.1 Charged particle in an electromagnetic field.
5.2 Absorption and emission.
5.3 Rayleigh and Raman scattering.
5.4 Thomson scattering.
6 Spectroscopy.
6.1 Atoms.
6.2 Molecules.
6.3 Diatomic molecules.
6.4 Polyatomic molecules.
6.5 Condensed-phase materials.
7 Lasers.
7.1 Laser dynamics.
7.2 Threshold.
7.3 Steady state.
7.4 Pulsed laser operation.
7.5 Cavity modes.
7.6 Amplified spontaneous emission.
7.7 Laser linewidth.
7.8 Laser coherence.
7.9 Specific laser systems.
8 Nonlinear optics.
8.1 Expansion of the polarization in the electric field.
8.2 Phase-matching.
8.3 Second harmonic generation.
8.4 Three-wave mixing.
8.5 Third harmonic generation.
8.6 Self-focusing and self-phase modulation.
8.7 Four-wave mixing.
8.8 Stimulated Raman processes.
8.9 Stimulated Brillouin processes.
8.10 Nonlinear matter-wave optics.
9 Quantum-optical processes.
9.1 Interaction of a two-level system with an electromagnetic field.
9.2 Liouville–von Neumann equation for the density matrix.
9.3 Three-level system.
9.4 Coherent states and squeezed states.
9.5 The Jaynes–Cummings model.
9.6 Interaction between modes of a quantum field.
10 Light propagation in optical fibers and introduction to optical communication systems.
10.1 Fiber characteristics.
10.2 Transverse modes of an optical fiber.
10.3 Nonlinear processes in fibers.
10.4 Fiber-optic communication systems.
Appendices.
Appendix A: vector analysis.
A.1 Scalar and vector products.
A.2 Differential operators.
A.3 Divergence and Stokes theorems.
A.4 Curvilinear coordinates.
Appendix B: Electromagnetism and Maxwell’s equations.
B.1 The laws of electromagnetism.
B.2 Electromagnetic units.
B.3 Maxwell’s equations.
Appendix C: Quantum mechanics and the Schr¨odinger equation.
C.1 Time-dependent and time-independent Schr¨odinger equations.
C.2 Spherical harmonics.
C.3 The radial Schrodinger equation.
C.4 The free particle.
C.5 The spherical top and the distorted spherical top.
C.6 The Coulomb potential.
C.7 Atomic units.
C.8 The Morse potential.
C.9 The harmonic oscillator potential.
Appendix D: perturbation theory.
D.1 Nondegenerate time-independent perturbation theory.
D.2 Degenerate time-independent perturbation theory.
D.3 Time-dependent perturbation theory.
Appendix E: Fundamental constants.
References.
Bibliography.
Index.
商品描述(中文翻譯)
《光與物質:電磁學、光學、光譜學和激光》涵蓋了光與物質相互作用的理論和應用。本書介紹了光的性質,解釋了光在物質中傳播時發生的關鍵過程,並討論了更高級的主題,如光與帶電粒子的相互作用方式以及相互作用機制的量子描述。
目錄:
前言
1. 電磁輻射
1.1 光與物質相互作用的簡要歷史
1.2 真空中的光
1.3 光的來源
2. 光在物質中的傳播現象
2.1 光的吸收
2.2 非線性吸收
2.3 折射率
2.4 非各向同性介質中的光學現象
2.5 電場效應
2.6 壓聲光效應
2.7 磁場效應
3. 光與物質的相互作用
3.1 洛倫茲力定律
3.2 帶電粒子在靜電和磁場中的運動
3.3 綁定電子在電磁場中的運動
3.4 帶電粒子加速度引起的輻射
3.5 多極輻射
3.6 光波包的散射
3.7 原子的冷卻和捕獲
4. 磁性現象、構成關係和等離子體
4.1 磁矩
4.2 磁化
4.3 磁共振
4.4 偏振和磁化作為源項
4.5 宏觀電磁學和構成關係的微觀導出
4.6 微觀偏振率和宏觀極化
4.7 電介質弛豫
4.8 等離子體
5. 吸收、發射和光散射的量子描述
5.1 帶電粒子在電磁場中
5.2 吸收和發射
5.3 瑞利和拉曼散射
5.4 湯姆森散射
6. 光譜學
6.1 原子
6.2 分子
6.3 雙原子分子
6.4 多原子分子
6.5 凝聚相材料
7. 激光
7.1 激光動力學
7.2 閾值
7.3 穩態
7.4 脈衝激光操作
7.5 腔模
7.6 放大的自發輻射
7.7 激光線寬
7.8 激光相干性
7.9 特定激光系統
8. 非線性光學
8.1 電場中極化的展開
8.2 相位匹配
8.3 二次諧波產生
8.4 三波混頻
8.5 三次諧波產生
8.6 自聚焦和自相位調制
8.7 四波混頻
8.8 受激拉曼過程
8.9 受激布里渊過程
8.10 非線性物質波光學
9. 量子光學過程
9.1 雙能級系統與電磁場的相互作用
9.2 密度矩陣的Liouville-von Neumann方程
9.3 三能級系統
9.4 相干態和擠壓態
9.5 Jaynes-Cummings模型
這本書提供了深入了解光與物質相互作用的理論和應用的資訊,適合對這個領域感興趣的讀者。