Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts (Paperback)
暫譯: 視覺微分幾何與形式:五幕數學劇

Needham, Tristan

買這商品的人也買了...

相關主題

商品描述

An inviting, intuitive, and visual exploration of differential geometry and forms

Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton's geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner.

Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss's famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein's field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell's equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan's method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book.

Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

商品描述(中文翻譯)

一個引人入勝、直觀且視覺化的 微分幾何與形式的探索

視覺微分幾何與形式 實現了兩個主要目標。在前四個部分中,Tristan Needham 將幾何學重新引入微分幾何 使用235幅手繪圖,Needham 運用牛頓的幾何方法提供了對經典結果的幾何解釋。在第五部分中,他提供了第一本本科生微分形式的入門書,直觀且以幾何方式處理進階主題。

前四個部分的獨特特點包括:四種不同的幾何證明,證明了基本重要的全球高斯-博內定理,提供了局部幾何與全球拓撲之間的驚人聯繫;高斯著名的《優異定理》的簡單幾何證明;對一個n流形的黎曼曲率張量的完整幾何處理;以及對愛因斯坦場方程的詳細幾何處理,將重力描述為彎曲的時空(廣義相對論),並探討其對重力波、黑洞和宇宙學的影響。最後一部分闡明了向量微積分所有積分定理的統一;以2-形式優雅地重新表述麥克斯韋電磁方程;de Rham 上同調;通過卡坦的移動框架方法進行微分幾何;以及使用曲率2-形式計算黎曼張量。第五部分的七個章節中有六個可以完全獨立於本書的其餘部分閱讀。

只需基本的微積分和幾何知識,視覺微分幾何與形式 挑戰性地重新思考了這一重要數學領域應該如何被考慮和教授。

作者簡介

Tristan Needham is professor of mathematics at the University of San Francisco. He is the author of Visual Complex Analysis.

作者簡介(中文翻譯)

特里斯坦·尼德漢是舊金山大學的數學教授。他是視覺複變分析的作者。