Text Mining in Practice with R
暫譯: R語言實務中的文本挖掘

Ted Kwartler

  • 出版商: Wiley
  • 出版日期: 2017-07-24
  • 定價: $2,600
  • 售價: 9.5$2,470
  • 語言: 英文
  • 頁數: 320
  • 裝訂: Hardcover
  • ISBN: 1119282012
  • ISBN-13: 9781119282013
  • 相關分類: Text-mining
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

A reliable, cost-effective approach to extracting priceless business information from all sources of text

Excavating actionable business insights from data is a complex undertaking, and that complexity is magnified by an order of magnitude when the focus is on documents and other text information. This book takes a practical, hands-on approach to teaching you a reliable, cost-effective approach to mining the vast, untold riches buried within all forms of text using R. 

Author Ted Kwartler clearly describes all of the tools needed to perform text mining and shows you how to use them to identify practical business applications to get your creative text mining efforts started right away. With the help of numerous real-world examples and case studies from industries ranging from healthcare to entertainment to telecommunications, he demonstrates how to execute an array of text mining processes and functions, including sentiment scoring, topic modelling, predictive modelling, extracting clickbait from headlines, and more. You’ll learn how to:

  • Identify actionable social media posts to improve customer service  
  • Use text mining in HR to identify candidate perceptions of an organisation, match job descriptions with resumes, and more 
  • Extract priceless information from virtually all digital and print sources, including the news media, social media sites, PDFs, and even JPEG and GIF image files
  • Make text mining an integral component of marketing in order to identify brand evangelists, impact customer propensity modelling, and much more

Most companies’ data mining efforts focus almost exclusively on numerical and categorical data, while text remains a largely untapped resource. Especially in a global marketplace where being first to identify and respond to customer needs and expectations imparts an unbeatable competitive advantage, text represents a source of immense potential value. Unfortunately, there is no reliable, cost-effective technology for extracting analytical insights from the huge and ever-growing volume of text available online and other digital sources, as well as from paper documents—until now. 

商品描述(中文翻譯)

一種可靠且具成本效益的方法,從所有文本來源中提取無價的商業資訊

從數據中挖掘可行的商業洞察是一項複雜的任務,當重點放在文件和其他文本資訊上時,這種複雜性會成倍增加。本書採取實用的、動手操作的方法,教您如何使用 R 來挖掘埋藏在各種文本形式中的豐富無價之寶,並且這種方法是可靠且具成本效益的。

作者 Ted Kwartler 清楚地描述了執行文本挖掘所需的所有工具,並向您展示如何使用這些工具來識別實際的商業應用,讓您的創意文本挖掘工作立即啟動。通過來自醫療、娛樂和電信等行業的眾多實際案例和範例,他展示了如何執行一系列文本挖掘過程和功能,包括情感評分、主題建模、預測建模、從標題中提取吸引點擊的內容等。您將學會如何:


  • 識別可行的社交媒體帖子以改善客戶服務

  • 在 HR 中使用文本挖掘來識別候選人對組織的看法,將職位描述與簡歷匹配等

  • 從幾乎所有數位和印刷來源中提取無價的資訊,包括新聞媒體、社交媒體網站、PDF 文件,甚至 JPEG 和 GIF 圖像檔案

  • 使文本挖掘成為行銷的核心組成部分,以識別品牌傳道者、影響客戶傾向建模等

大多數公司的數據挖掘工作幾乎專注於數值和類別數據,而文本仍然是一個未被充分開發的資源。特別是在全球市場中,能夠第一時間識別並回應客戶需求和期望將帶來無可比擬的競爭優勢,文本代表著巨大的潛在價值。不幸的是,直到現在,尚無可靠且具成本效益的技術能夠從龐大且不斷增長的在線文本和其他數位來源以及紙本文件中提取分析洞察。