Statistical Learning for Big Dependent Data
暫譯: 大依賴數據的統計學習
Peña, Daniel, Tsay, Ruey S.
- 出版商: Wiley
- 出版日期: 2021-05-04
- 定價: $3,660
- 售價: 9.5 折 $3,477
- 語言: 英文
- 頁數: 560
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119417384
- ISBN-13: 9781119417385
-
相關分類:
大數據 Big-data、Machine Learning、機率統計學 Probability-and-statistics
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$3,980$3,781 -
$2,500$2,375 -
$2,650$2,518 -
$2,510$2,385 -
$2,960$2,812 -
$3,080$2,926
相關主題
商品描述
Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource
Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented.
Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications.
Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like:
- New ways to plot large sets of time series
- An automatic procedure to build univariate ARMA models for individual components of a large data set
- Powerful outlier detection procedures for large sets of related time series
- New methods for finding the number of clusters of time series and discrimination methods, including vector support machines, for time series
- Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models
- Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series
- Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting.
- Introduction of modern procedures for modeling and forecasting spatio-temporal data
Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.
商品描述(中文翻譯)
掌握大型動態依賴數據集分析的進階主題,透過這本深具洞察力的資源
Statistical Learning with Big Dependent Data 提供了有關分析和預測大型動態依賴數據集的統計和機器學習方法的全面介紹。本書介紹了自動化程序,用於建模和預測大量時間序列數據集。從一些可視化工具開始,本書討論了尋找異常值、聚類和其他類型異質性的程序和方法。接著介紹了各種降維方法,包括正則化和因子模型,如在動態依賴情況下的正則化 Lasso 和動態因子模型。本書還涵蓋了其他預測程序,包括指數模型、偏最小二乘法、提升法和即時預測。進一步介紹了機器學習方法,包括神經網絡、深度學習、分類與回歸樹以及隨機森林。最後,本書還介紹了建模和預測時空依賴數據的程序。
在整本書中,討論了所述方法的優缺點。本書使用真實世界的例子來展示應用,包括使用許多 R 套件。最後,與本書相關的 R 套件可供讀者使用,以重現示例的分析並促進實際應用。
Analysis of Big Dependent Data 包含了多種主題,用於建模和理解大型依賴數據,例如:
- 繪製大型時間序列數據的新方法
- 為大型數據集的各個組件構建單變量 ARMA 模型的自動程序
- 針對大型相關時間序列的強大異常值檢測程序
- 尋找時間序列聚類數量的新方法和區分方法,包括向量支持機器
- 動態因子模型的廣泛覆蓋,包括廣義動態因子模型的新表示和估計方法
- 討論 Lasso 在時間序列中的有效性,以及對多種機器學習預測大型時間序列的程序的評估
- 使用外生變量預測大型時間序列,包括指數模型、偏最小二乘法和提升法的討論
- 介紹現代時空數據建模和預測的程序
非常適合商業、經濟學、工程和科學領域的博士生和研究人員:Statistical Learning with Big Dependent Data 也適合希望提高對分析和預測大型依賴數據的統計和機器學習方法理解的實務工作者。
作者簡介
Daniel Peña, PhD, is Professor of Statistics at Universidad Carlos III de Madrid, Spain. He received his PhD from Universidad Politecnica de Madrid in 1976 and has taught at the Universities of Wisconsin-Madison, Chicago and Carlos III de Madrid, where he was Rector from 2007 to 2015.
Ruey S. Tsay, PhD, is the H.G.B Alexander Professor of Econometrics & Statistics at the Booth School of Business, University of Chicago, United States. He received his PhD in 1982 from the University of Wisconsin-Madison. His research focuses on areas of business and economic forecasting, financial econometrics, risk management, and analysis of big dependent data.
作者簡介(中文翻譯)
丹尼爾·佩尼亞(Daniel Peña,博士)是西班牙馬德里卡洛斯三世大學的統計學教授。他於1976年在馬德里理工大學獲得博士學位,並曾在威斯康辛大學麥迪遜分校、芝加哥大學及馬德里卡洛斯三世大學任教,並於2007年至2015年擔任該校校長。
蔡瑞士(Ruey S. Tsay,博士)是美國芝加哥大學布斯商學院的H.G.B.亞歷山大計量經濟學與統計學教授。他於1982年在威斯康辛大學麥迪遜分校獲得博士學位。他的研究專注於商業與經濟預測、金融計量經濟學、風險管理及大依賴數據分析等領域。