Fundamental Mechanics of Fluids, 4/e (Hardcover)
暫譯: 流體基本力學,第4版 (精裝本)
I.G. Currie
- 出版商: CRC
- 出版日期: 2012-08-01
- 售價: $6,190
- 貴賓價: 9.5 折 $5,881
- 語言: 英文
- 頁數: 603
- 裝訂: Hardcover
- ISBN: 1439874603
- ISBN-13: 9781439874608
海外代購書籍(需單獨結帳)
相關主題
商品描述
<內容簡介>
Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics—before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections:
* Governing Equations deals with the derivation of the basic conservation laws, flow kinematics, and some basic theorems of fluid mechanics.
* Ideal-Fluid Flow covers two- and three-dimensional potential flows and surface waves.
* Viscous Flows of Incompressible Fluids discusses exact solutions, low-Reynolds-number approximations, boundary-layer theory, and buoyancy-driven flows.
* Compressible Flow of Inviscid Fluids addresses shockwaves as well as one- and multidimensional flows.
* Methods of Mathematical Analysis summarizes some commonly used analysis techniques. Additional appendices offer a synopsis of vectors, tensors, Fourier series, thermodynamics, and the governing equations in the common coordinate systems.
The book identifies the phenomena associated with the various properties of compressible, viscous fluids in unsteady, three-dimensional flow situations. It provides techniques for solving specific types of fluid-flow problems, and it covers the derivation of the basic equations governing the laminar flow of Newtonian fluids, first assessing general situations and then shifting focus to more specific scenarios.
The author illustrates the process of finding solutions to the governing equations. In the process, he reveals both the mathematical methodology and physical phenomena involved in each category of flow situation, which include ideal, viscous, and compressible fluids. This categorization enables a clear explanation of the different solution methods and the basis for the various physical consequences of fluid properties and flow characteristics. Armed with this new understanding, readers can then apply the appropriate equation results to deal with the particular circumstances of their own work.
Table Of Contents
Part I: Governing Equations
Basic Conservation Laws
Statistical and Continuum Methods
Eulerian and Lagrangian Coordinates
Material Derivative
Control Volumes
Reynolds’ Transport Theorem
Conservation of Mass
Conservation of Momentum
Conservation of Energy
Discussion of Conservation Equations
Rotation and Rate of Shear
Constitutive Equations
Viscosity Coefficients
Navier–Stokes Equations
Energy Equation
Governing Equations for Newtonian Fluids
Boundary Conditions
Flow Kinematics
Flow Lines
Circulation and Vorticity
Stream Tubes and Vortex Tubes
Kinematics of Vortex Lines
Special Forms of the Governing Equations
Kelvin’s Theorem
Bernoulli Equation
Crocco’s Equation
Vorticity Equation
Part II: Ideal-Fluid Flow
Two-Dimensional Potential Flows
Stream Function
Complex Potential and Complex Velocity
Uniform Flows
Source, Sink, and Vortex Flows
Flow in Sector
Flow around Sharp Edge
Flow due to Doublet
Circular Cylinder without Circulation
Circular Cylinder with Circulation
Blasius Integral Laws
Force and Moment on Circular Cylinder
Conformal Transformations
Joukowski Transformation
Flow around Ellipses
Kutta Condition and Flat-Plate Airfoil
Symmetrical Joukowski Airfoil
Circular-Arc Airfoil
Joukowski Airfoil
Schwarz–Christoffel Transformation
Source in Channel
Flow through Aperture
Flow Past Vertical Flat Plate
Three-Dimensional Potential Flows
Velocity Potential
Stokes’ Stream Function
Solution of Potential Equation
Uniform Flow
Source and Sink
Flow due to Doublet
Flow near Blunt Nose
Flow around Sphere
Line-Distributed Source
Sphere in Flow Field of Source
Rankine Solids
D’Alembert’s Paradox
Forces Induced by Singularities
Kinetic Energy of Moving Fluid
Apparent Mass
Surface Waves
General Surface-Wave Problem
Small-Amplitude Plane Waves
Propagation of Surface Waves
Effect of Surface Tension
Shallow-Liquid Waves of Arbitrary Form
Complex Potential for Traveling Waves
Particle Paths for Traveling Waves
Standing Waves
Particle Paths for Standing Waves
Waves in Rectangular Vessels
Waves in Cylindrical Vessels
Propagation of Waves at Interface
Part III: Viscous Flows of Incompressible Fluids
Exact Solutions
Couette Flow
Poiseuille Flow
Flow between Rotating Cylinders
Stokes’ First Problem
Stokes’ Second Problem
Pulsating Flow between Parallel Surfaces
Stagnation-Point Flow
Flow in Convergent and Divergent Channels
Flow over Porous Wall
Low Reynolds Number Solutions
Stokes Approximation
Uniform Flow
Doublet
Rotlet
Stokeslet
Rotating Sphere in Fluid
Uniform Flow Past Sphere
Uniform Flow Past Circular Cylinder
Oseen Approximation
Boundary Layers
Boundary-Layer Thicknesses
Boundary-Layer Equations
Blasius Solution
Falkner–Skan Solutions
Flow over a Wedge
Stagnation-Point Flow
Flow in Convergent Channel
Approximate Solution for Flat Surface
General Momentum Integral
Ka'rma'n–Pohlhausen Approximation
Boundary-Layer Separation
Stability of Boundary Layers
Buoyancy-Driven Flows
Boussinesq Approximation
Thermal Convection
Boundary-Layer Approximations
Vertical Isothermal Surface
Line Source of Heat
Point Source of Heat
Stability of Horizontal Layers
Part IV: Compressible Flow of Inviscid Fluids
Shock Waves
Propagation of Infinitesimal Disturbances
Propagation of Finite Disturbances
Rankine-Hugoniot Equations
Conditions for Normal Shock Waves
Normal-Shock-Wave Equations
Oblique Shock Waves
One-Dimensional Flows
Weak Waves
Weak Shock Tubes
Wall Reflection of Waves
Reflection and Refraction at Interface
Piston Problem
Finite-Strength Shock Tubes
Nonadiabatic Flows
Isentropic-Flow Relations
Flow through Nozzles
Multidimensional Flows
Irrotational Motion
Janzen–Rayleigh Expansion
Small-Perturbation Theory
Pressure Coefficient
Flow over Wave-Shaped Wall
Prandtl–Glauert Rule for Subsonic Flow
Ackeret’s Theory for Supersonic Flows
Prandtl–Meyer Flow
Part V: Methods of Mathematical Analysis
Some Useful Methods of Analysis
Fourier Series
Complex Variables
Separation of Variable Solutions
Similarity Solutions
Group Invariance Methods
Appendix A: Vector Analysis
Vector Identities
Integral Theorems
Orthogonal Curvilinear Coordinates
Appendix B: Tensors
Notation and Definition
Tensor Algebra
Tensor Operations
Isotropic Tensors
Integral Theorems
Appendix C: Governing Equations
Cartesian Coordinates
Cylindrical Coordinates
Spherical Coordinates
Appendix D: Fourier Series
Appendix E: Thermodynamics
Zeroth Law
First Law
Equations of State
Enthalpy
Specific Heats
Adiabatic, Reversible Processes
Entropy
Second Law
Canonical Equations of State
Reciprocity Relations
商品描述(中文翻譯)
內容簡介
《流體力學基礎(第四版)》滿足了對於一本專注於流體力學基礎的入門教材的需求,然後再專注於理想流體流動和邊界層理論等專業領域。這本多功能的教學資源填補了學生和在不同工程領域工作的專業人士之間的空白,包含五個靈活且獨立的部分:
* 控制方程:處理基本守恆定律的推導、流動運動學以及一些流體力學的基本定理。
* 理想流體流動:涵蓋二維和三維的潛在流動及表面波。
* 不可壓縮流體的粘性流動:討論精確解、低雷諾數近似、邊界層理論和浮力驅動流動。
* 不可黏流體的可壓縮流動:處理衝擊波以及一維和多維流動。
* 數學分析方法:總結一些常用的分析技術。附錄提供了向量、張量、傅立葉級數、熱力學和常見坐標系中的控制方程的概要。
本書識別了與不可壓縮、粘性流體在非穩態三維流動情況下的各種性質相關的現象。它提供了解決特定類型流體流動問題的技術,並涵蓋了牛頓流體層流的基本方程的推導,首先評估一般情況,然後轉向更具體的場景。
作者說明了尋找控制方程解的過程。在此過程中,他揭示了每類流動情況中涉及的數學方法論和物理現象,包括理想流體、粘性流體和可壓縮流體。這種分類使得不同解法的清晰解釋成為可能,並為流體性質和流動特徵的各種物理後果提供了基礎。擁有這種新理解的讀者,能夠將適當的方程結果應用於他們自己工作的特定情況。
目錄
第一部分:控制方程
基本守恆定律
統計和連續方法
歐拉坐標和拉格朗日坐標
物質導數
控制體積
雷諾傳輸定理
質量守恆
動量守恆
能量守恆
守恆方程的討論
旋轉和剪切速率
本構方程
粘度係數
Navier–Stokes 方程
能量方程
牛頓流體的控制方程
邊界條件
流動運動學
流線
環流和渦度
流管和渦管
渦線的運動學
控制方程的特殊形式
凱爾文定理
伯努利方程
Crocco 方程
渦度方程
第二部分:理想流體流動
二維潛在流
流函數
複數潛在和複數速度
均勻流
源、匯和渦流
扇形流
銳邊流
由雙點引起的流動
無環流的圓柱
有環流的圓柱
Blasius 積分定律
圓柱上的力和力矩
共形變換
Joukowski 變換
圍繞橢圓的流動
Kutta 條件和平板翼
對稱 Joukowski 翼
圓弧翼
Joukowski 翼
Schwarz–Christoffel 變換
通道中的源
通過孔徑的流動
垂直平板旁的流動
三維潛在流
速度潛在
Stokes 的流函數
潛在方程的解
均勻流
源和匯
由雙點引起的流動
鈍鼻附近的流動
圍繞球體的流動
線性分佈源
流場中的球體
Rankine 固體
D’Alembert 悖論
由奇異性引起的力
運動流體的動能
表觀質量
表面波
一般表面波問題
小幅度平面波
表面波的傳播
表面張力的影響
任意形狀的淺液波
行進波的複數潛在
行進波的粒子路徑
駐波
駐波的粒子路徑
矩形容器中的波
圓柱容器中的波
界面波的傳播
第三部分:不可壓縮流體的粘性流動
精確解
Couette 流
Poiseuille 流
旋轉圓柱之間的流動
Stokes 的第一個問題
Stokes 的第二個問題
平行表面之間的脈動流
停滯點流
在收斂和發散通道中的流動
流過多孔壁
低雷諾數解
Stokes 近似
均勻流
雙點
旋轉流
Stokeslet
流體中的旋轉球
圓球旁的均勻流
圓柱旁的均勻流
Oseen 近似
邊界層
邊界層厚度
邊界層方程
Blasius 解
Falkner–Skan 解
楔形流
停滯點流
收斂通道中的流動
平面表面的近似解
一般動量積分
Ka'rma'n–Pohlhausen 近似
邊界層分離
邊界層的穩定性
浮力驅動流
Boussinesq 近似
熱對流
邊界層近似
垂直等溫表面
熱源的線源
熱源的點源
水平層的穩定性
第四部分:不可黏流體的可壓縮流動
衝擊波
微小擾動的傳播
有限擾動的傳播
Rankine-Hugoniot 方程
正常衝擊波的條件
正常衝擊波方程
斜衝擊波
一維流動
弱波
弱衝擊管
波的牆面反射
界面的反射和折射
活塞問題
有限強度衝擊管
非絕熱流
等熵流關係
通過噴嘴的流動
多維流動
無旋運動
Janzen–Rayleigh 展開
小擾動理論
壓力係數
流過波形牆的流動
Prandtl–Glauert 規則(亞音速流)
Ackeret 的超音速流理論
Prandtl–Meyer 流
第五部分:數學分析方法
一些有用的分析方法
傅立葉級數
複變數
變數分離解
相似解
群不變方法
附錄 A:向量分析
向量恆等式
積分定理
正交曲線坐標
附錄 B:張量
符號和定義
張量代數
張量運算
各向同性張量
積分定理
附錄 C:控制方程
直角坐標
圓柱坐標
球坐標
附錄 D:傅立葉級數
附錄 E:熱力學
零定律
第一定律
狀態方程
焓
比熱
絕熱、可逆過程
熵
第二定律
狀態方程的典範
互惠關係