Fundamental Mechanics of Fluids, 4/e (Hardcover)
暫譯: 流體基本力學,第4版 (精裝本)

I.G. Currie

  • 出版商: CRC
  • 出版日期: 2012-08-01
  • 售價: $6,190
  • 貴賓價: 9.5$5,881
  • 語言: 英文
  • 頁數: 603
  • 裝訂: Hardcover
  • ISBN: 1439874603
  • ISBN-13: 9781439874608
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

<內容簡介>

Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics—before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections:

* Governing Equations deals with the derivation of the basic conservation laws, flow kinematics, and some basic theorems of fluid mechanics.

* Ideal-Fluid Flow covers two- and three-dimensional potential flows and surface waves.

* Viscous Flows of Incompressible Fluids discusses exact solutions, low-Reynolds-number approximations, boundary-layer theory, and buoyancy-driven flows.

* Compressible Flow of Inviscid Fluids addresses shockwaves as well as one- and multidimensional flows.

* Methods of Mathematical Analysis summarizes some commonly used analysis techniques. Additional appendices offer a synopsis of vectors, tensors, Fourier series, thermodynamics, and the governing equations in the common coordinate systems.

The book identifies the phenomena associated with the various properties of compressible, viscous fluids in unsteady, three-dimensional flow situations. It provides techniques for solving specific types of fluid-flow problems, and it covers the derivation of the basic equations governing the laminar flow of Newtonian fluids, first assessing general situations and then shifting focus to more specific scenarios.

The author illustrates the process of finding solutions to the governing equations. In the process, he reveals both the mathematical methodology and physical phenomena involved in each category of flow situation, which include ideal, viscous, and compressible fluids. This categorization enables a clear explanation of the different solution methods and the basis for the various physical consequences of fluid properties and flow characteristics. Armed with this new understanding, readers can then apply the appropriate equation results to deal with the particular circumstances of their own work.

Table Of Contents

Part I: Governing Equations

Basic Conservation Laws

Statistical and Continuum Methods

Eulerian and Lagrangian Coordinates

Material Derivative

Control Volumes

Reynolds’ Transport Theorem

Conservation of Mass

Conservation of Momentum

Conservation of Energy

Discussion of Conservation Equations

Rotation and Rate of Shear

Constitutive Equations

Viscosity Coefficients

Navier–Stokes Equations

Energy Equation

Governing Equations for Newtonian Fluids

Boundary Conditions

Flow Kinematics

Flow Lines

Circulation and Vorticity

Stream Tubes and Vortex Tubes

Kinematics of Vortex Lines

Special Forms of the Governing Equations

Kelvin’s Theorem

Bernoulli Equation

Crocco’s Equation

Vorticity Equation

Part II: Ideal-Fluid Flow

Two-Dimensional Potential Flows

Stream Function

Complex Potential and Complex Velocity

Uniform Flows

Source, Sink, and Vortex Flows

Flow in Sector

Flow around Sharp Edge

Flow due to Doublet

Circular Cylinder without Circulation

Circular Cylinder with Circulation

Blasius Integral Laws

Force and Moment on Circular Cylinder

Conformal Transformations

Joukowski Transformation

Flow around Ellipses

Kutta Condition and Flat-Plate Airfoil

Symmetrical Joukowski Airfoil

Circular-Arc Airfoil

Joukowski Airfoil

Schwarz–Christoffel Transformation

Source in Channel

Flow through Aperture

Flow Past Vertical Flat Plate

Three-Dimensional Potential Flows

Velocity Potential

Stokes’ Stream Function

Solution of Potential Equation

Uniform Flow

Source and Sink

Flow due to Doublet

Flow near Blunt Nose

Flow around Sphere

Line-Distributed Source

Sphere in Flow Field of Source

Rankine Solids

D’Alembert’s Paradox

Forces Induced by Singularities

Kinetic Energy of Moving Fluid

Apparent Mass

Surface Waves

General Surface-Wave Problem

Small-Amplitude Plane Waves

Propagation of Surface Waves

Effect of Surface Tension

Shallow-Liquid Waves of Arbitrary Form

Complex Potential for Traveling Waves

Particle Paths for Traveling Waves

Standing Waves

Particle Paths for Standing Waves

Waves in Rectangular Vessels

Waves in Cylindrical Vessels

Propagation of Waves at Interface

Part III: Viscous Flows of Incompressible Fluids

Exact Solutions

Couette Flow

Poiseuille Flow

Flow between Rotating Cylinders

Stokes’ First Problem

Stokes’ Second Problem

Pulsating Flow between Parallel Surfaces

Stagnation-Point Flow

Flow in Convergent and Divergent Channels

Flow over Porous Wall

Low Reynolds Number Solutions

Stokes Approximation

Uniform Flow

Doublet

Rotlet

Stokeslet

Rotating Sphere in Fluid

Uniform Flow Past Sphere

Uniform Flow Past Circular Cylinder

Oseen Approximation

Boundary Layers

Boundary-Layer Thicknesses

Boundary-Layer Equations

Blasius Solution

Falkner–Skan Solutions

Flow over a Wedge

Stagnation-Point Flow

Flow in Convergent Channel

Approximate Solution for Flat Surface

General Momentum Integral

Ka'rma'n–Pohlhausen Approximation

Boundary-Layer Separation

Stability of Boundary Layers

Buoyancy-Driven Flows

Boussinesq Approximation

Thermal Convection

Boundary-Layer Approximations

Vertical Isothermal Surface

Line Source of Heat

Point Source of Heat

Stability of Horizontal Layers

Part IV: Compressible Flow of Inviscid Fluids

Shock Waves

Propagation of Infinitesimal Disturbances

Propagation of Finite Disturbances

Rankine-Hugoniot Equations

Conditions for Normal Shock Waves

Normal-Shock-Wave Equations

Oblique Shock Waves

One-Dimensional Flows

Weak Waves

Weak Shock Tubes

Wall Reflection of Waves

Reflection and Refraction at Interface

Piston Problem

Finite-Strength Shock Tubes

Nonadiabatic Flows

Isentropic-Flow Relations

Flow through Nozzles

Multidimensional Flows

Irrotational Motion

Janzen–Rayleigh Expansion

Small-Perturbation Theory

Pressure Coefficient

Flow over Wave-Shaped Wall

Prandtl–Glauert Rule for Subsonic Flow

Ackeret’s Theory for Supersonic Flows

Prandtl–Meyer Flow

Part V: Methods of Mathematical Analysis

Some Useful Methods of Analysis

Fourier Series

Complex Variables

Separation of Variable Solutions

Similarity Solutions

Group Invariance Methods

Appendix A: Vector Analysis

Vector Identities

Integral Theorems

Orthogonal Curvilinear Coordinates

Appendix B: Tensors

Notation and Definition

Tensor Algebra

Tensor Operations

Isotropic Tensors

Integral Theorems

Appendix C: Governing Equations

Cartesian Coordinates

Cylindrical Coordinates

Spherical Coordinates

Appendix D: Fourier Series

Appendix E: Thermodynamics

Zeroth Law

First Law

Equations of State

Enthalpy

Specific Heats

Adiabatic, Reversible Processes

Entropy

Second Law

Canonical Equations of State

Reciprocity Relations

商品描述(中文翻譯)

內容簡介

《流體力學基礎(第四版)》滿足了對於一本專注於流體力學基礎的入門教材的需求,然後再專注於理想流體流動和邊界層理論等專業領域。這本多功能的教學資源填補了學生和在不同工程領域工作的專業人士之間的空白,包含五個靈活且獨立的部分:

* 控制方程:處理基本守恆定律的推導、流動運動學以及一些流體力學的基本定理。

* 理想流體流動:涵蓋二維和三維的潛在流動及表面波。

* 不可壓縮流體的粘性流動:討論精確解、低雷諾數近似、邊界層理論和浮力驅動流動。

* 不可黏流體的可壓縮流動:處理衝擊波以及一維和多維流動。

* 數學分析方法:總結一些常用的分析技術。附錄提供了向量、張量、傅立葉級數、熱力學和常見坐標系中的控制方程的概要。

本書識別了與不可壓縮、粘性流體在非穩態三維流動情況下的各種性質相關的現象。它提供了解決特定類型流體流動問題的技術,並涵蓋了牛頓流體層流的基本方程的推導,首先評估一般情況,然後轉向更具體的場景。

作者說明了尋找控制方程解的過程。在此過程中,他揭示了每類流動情況中涉及的數學方法論和物理現象,包括理想流體、粘性流體和可壓縮流體。這種分類使得不同解法的清晰解釋成為可能,並為流體性質和流動特徵的各種物理後果提供了基礎。擁有這種新理解的讀者,能夠將適當的方程結果應用於他們自己工作的特定情況。

目錄

第一部分:控制方程

基本守恆定律

統計和連續方法

歐拉坐標和拉格朗日坐標

物質導數

控制體積

雷諾傳輸定理

質量守恆

動量守恆

能量守恆

守恆方程的討論

旋轉和剪切速率

本構方程

粘度係數

Navier–Stokes 方程

能量方程

牛頓流體的控制方程

邊界條件

流動運動學

流線

環流和渦度

流管和渦管

渦線的運動學

控制方程的特殊形式

凱爾文定理

伯努利方程

Crocco 方程

渦度方程

第二部分:理想流體流動

二維潛在流

流函數

複數潛在和複數速度

均勻流

源、匯和渦流

扇形流

銳邊流

由雙點引起的流動

無環流的圓柱

有環流的圓柱

Blasius 積分定律

圓柱上的力和力矩

共形變換

Joukowski 變換

圍繞橢圓的流動

Kutta 條件和平板翼

對稱 Joukowski 翼

圓弧翼

Joukowski 翼

Schwarz–Christoffel 變換

通道中的源

通過孔徑的流動

垂直平板旁的流動

三維潛在流

速度潛在

Stokes 的流函數

潛在方程的解

均勻流

源和匯

由雙點引起的流動

鈍鼻附近的流動

圍繞球體的流動

線性分佈源

流場中的球體

Rankine 固體

D’Alembert 悖論

由奇異性引起的力

運動流體的動能

表觀質量

表面波

一般表面波問題

小幅度平面波

表面波的傳播

表面張力的影響

任意形狀的淺液波

行進波的複數潛在

行進波的粒子路徑

駐波

駐波的粒子路徑

矩形容器中的波

圓柱容器中的波

界面波的傳播

第三部分:不可壓縮流體的粘性流動

精確解

Couette 流

Poiseuille 流

旋轉圓柱之間的流動

Stokes 的第一個問題

Stokes 的第二個問題

平行表面之間的脈動流

停滯點流

在收斂和發散通道中的流動

流過多孔壁

低雷諾數解

Stokes 近似

均勻流

雙點

旋轉流

Stokeslet

流體中的旋轉球

圓球旁的均勻流

圓柱旁的均勻流

Oseen 近似

邊界層

邊界層厚度

邊界層方程

Blasius 解

Falkner–Skan 解

楔形流

停滯點流

收斂通道中的流動

平面表面的近似解

一般動量積分

Ka'rma'n–Pohlhausen 近似

邊界層分離

邊界層的穩定性

浮力驅動流

Boussinesq 近似

熱對流

邊界層近似

垂直等溫表面

熱源的線源

熱源的點源

水平層的穩定性

第四部分:不可黏流體的可壓縮流動

衝擊波

微小擾動的傳播

有限擾動的傳播

Rankine-Hugoniot 方程

正常衝擊波的條件

正常衝擊波方程

斜衝擊波

一維流動

弱波

弱衝擊管

波的牆面反射

界面的反射和折射

活塞問題

有限強度衝擊管

非絕熱流

等熵流關係

通過噴嘴的流動

多維流動

無旋運動

Janzen–Rayleigh 展開

小擾動理論

壓力係數

流過波形牆的流動

Prandtl–Glauert 規則(亞音速流)

Ackeret 的超音速流理論

Prandtl–Meyer 流

第五部分:數學分析方法

一些有用的分析方法

傅立葉級數

複變數

變數分離解

相似解

群不變方法

附錄 A:向量分析

向量恆等式

積分定理

正交曲線坐標

附錄 B:張量

符號和定義

張量代數

張量運算

各向同性張量

積分定理

附錄 C:控制方程

直角坐標

圓柱坐標

球坐標

附錄 D:傅立葉級數

附錄 E:熱力學

零定律

第一定律

狀態方程

比熱

絕熱、可逆過程

第二定律

狀態方程的典範

互惠關係