Predictive Analytics with Microsoft Azure Machine Learning: Build and Deploy Actionable Solutions in Minutes (Paperback)
暫譯: 使用 Microsoft Azure Machine Learning 進行預測分析:在幾分鐘內構建和部署可行解決方案 (平裝本)

Roger Barga, Wee Hyong Tok, Valentine Fontama

  • 出版商: Apress
  • 出版日期: 2014-11-01
  • 售價: $1,760
  • 貴賓價: 9.5$1,672
  • 語言: 英文
  • 頁數: 188
  • 裝訂: Paperback
  • ISBN: 1484204468
  • ISBN-13: 9781484204467
  • 相關分類: Microsoft AzureMachine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis.

The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models.

The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter.

The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.

What you’ll learn

  • A structured introduction to Data Science and its best practices
  • An introduction to the new Microsoft Azure Machine Learning service, explaining how to effectively build and deploy predictive models as machine learning web services
  • Practical skills such as how to solve typical predictive analytics problems like propensity modeling, churn analysis and product recommendation.
  • An introduction to the following skills: basic Data Science, the Data Mining process, frameworks for solving practical business problems with Machine Learning, and visualization with Power BI

Who this book is for

Data Scientists, Business Analysts, BI Professionals and Developers who are interested in expanding their repertoire of skill applied to machine learning and predictive analytics, as well as anyone interested in an in-depth explanation of the Microsoft Azure Machine Learning service through practical tasks and concrete applications.

The reader is assumed to have basic knowledge of statistics and data analysis, but not deep experience in data science or data mining. Advanced programming skills are not required, although some experience with R programming would prove very useful.

Table of Contents

Part 1: Introducing Data Science and Microsoft Azure machine Learning

1. Introduction to Data Science

2. Introducing Microsoft Azure Machine Learning

3. Integration with R

Part 2: Statistical and Machine Learning Algorithms

4. Introduction to Statistical and Machine Learning Algorithms

Part 3: Practical applications

5. Customer propensity models

6. Building churn models

7. Customer segmentation models

8. Predictive Maintenance

商品描述(中文翻譯)

資料科學和機器學習的需求日益增加,因為客戶越來越希望從所有數據中獲取洞察。越來越多的客戶意識到商業智慧(Business Intelligence)已經不足以應對當前數據的體量、速度和複雜性,這些特徵使得傳統的分析工具無法應對。商業智慧主要處理描述性和診斷性分析,而資料科學則通過預測性和處方性分析開啟了新的機會。

本書的目的是提供一個溫和且有組織的資料科學和機器學習領域的入門介紹,重點在於構建和部署預測模型。

本書還提供了對 Microsoft Azure 機器學習服務的全面概述,使用以任務為導向的描述和具體的端到端範例,足以確保讀者能立即開始使用這項重要的新服務。它描述了該服務的所有方面,從數據進入到應用機器學習和評估結果模型,再到將結果模型部署為機器學習網路服務。最後,本書力求最小化依賴性,以便讀者可以相對輕鬆地選擇閱讀的章節。當存在依賴性時,會在章節的開始和結尾列出。

Microsoft 這項新服務的簡單性將幫助資料科學和機器學習吸引比現有產品更廣泛的受眾。了解如何利用 Microsoft 的新 Azure 機器學習服務快速構建和部署複雜的預測模型作為機器學習網路服務。

你將學到的內容:
- 資料科學及其最佳實踐的結構化介紹
- 新的 Microsoft Azure 機器學習服務的介紹,解釋如何有效地構建和部署預測模型作為機器學習網路服務
- 實用技能,例如如何解決典型的預測分析問題,如傾向建模、流失分析和產品推薦
- 以下技能的介紹:基本資料科學、資料挖掘過程、使用機器學習解決實際商業問題的框架,以及使用 Power BI 進行可視化

本書的讀者對象:
資料科學家、商業分析師、商業智慧專業人士和開發人員,對擴展其在機器學習和預測分析方面的技能感興趣,以及任何希望通過實際任務和具體應用深入了解 Microsoft Azure 機器學習服務的人。

假設讀者具備基本的統計和數據分析知識,但不需要在資料科學或資料挖掘方面有深入的經驗。雖然不需要高級編程技能,但對 R 編程有一些經驗將非常有用。

目錄:
第一部分:介紹資料科學和 Microsoft Azure 機器學習
1. 資料科學介紹
2. 介紹 Microsoft Azure 機器學習
3. 與 R 的整合
第二部分:統計和機器學習算法
4. 統計和機器學習算法介紹
第三部分:實際應用
5. 客戶傾向模型
6. 構建流失模型
7. 客戶細分模型
8. 預測性維護