Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization
暫譯: 進階 R 統計程式設計與數據模型:分析、機器學習與視覺化
Wiley, Matt, Wiley, Joshua F.
- 出版商: Apress
- 出版日期: 2019-02-21
- 售價: $2,800
- 貴賓價: 9.5 折 $2,660
- 語言: 英文
- 頁數: 638
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484228715
- ISBN-13: 9781484228715
-
相關分類:
R 語言、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,240An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$2,800$2,660 -
$2,040$1,938 -
$580$458 -
$580$458 -
$3,420$3,249 -
$3,465$3,292 -
$2,200$2,090 -
$2,224Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures
-
$1,715Introduction to Probability, 2/e (Hardcover)
-
$1,000$900 -
$2,800$2,660 -
$1,805Machine Learning with R - Fourth Edition: Learn techniques for building and improving machine learning models, from data preparation to model tuning,
相關主題
商品描述
Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study.
Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You'll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language.
What You'll Learn
- Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing
- Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis
- Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification
- Address missing data using multiple imputation in R
- Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability
Who This Book Is For
Working professionals, researchers, or students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to use R to perform more advanced analytics. Particularly, researchers and data analysts in the social sciences may benefit from these techniques. Additionally, analysts who need parallel processing to speed up analytics are given proven code to reduce time to result(s).
商品描述(中文翻譯)
進行各種高級統計分析,包括廣義加法模型、混合效應模型、多重插補、機器學習和缺失數據技術,使用 R 語言。每一章都以技術的概念背景信息開始,包含多個使用 R 來達成結果的範例,並以案例研究作結。
由 Matt 和 Joshua F. Wiley 所著的《Advanced R Statistical Programming and Data Models》展示了如何使用流行的 R 語言進行數據分析。您將深入了解各種統計測試和技術的前提條件或假設,並通過具體範例使用 R 進行這些高階分析的實作。這是一本必備的指南和參考書,關於使用和編程 R 語言。
**您將學到的內容**
- 在 R 中進行高級分析,包括:廣義線性模型、廣義加法模型、混合效應模型、機器學習和並行處理
- 使用 R 數據可視化進行回歸建模,包括線性和高級回歸、加法模型、生存/事件時間分析
- 使用 R 處理機器學習,包括並行處理、降維和特徵選擇與分類
- 使用 R 的多重插補技術處理缺失數據
- 進行因素分析、廣義線性混合模型和建模個體內變異性
**本書適合誰閱讀**
本書適合熟悉 R 語言和基本統計技術(如線性回歸)的工作專業人士、研究人員或學生,並希望學習如何使用 R 進行更高級的分析。特別是社會科學領域的研究人員和數據分析師可能會從這些技術中受益。此外,需要並行處理以加速分析的分析師,將獲得經過驗證的代碼以縮短結果的時間。
作者簡介
Matt Wiley is a tenured, associate professor of mathematics with awards in both mathematics education and honour student engagement. He earned degrees in pure mathematics, computer science, and business administration through the University of California and Texas A&M systems. He serves as director for Victoria College's quality enhancement plan and managing partner at Elkhart Group Limited, a statistical consultancy. With programming experience in R, C++, Ruby, Fortran, and JavaScript, he has always found ways to meld his passion for writing with his joy of logical problem solving and data science. From the boardroom to the classroom, Matt enjoys finding dynamic ways to partner with interdisciplinary and diverse teams to make complex ideas and projects understandable and solvable.
Joshua F. Wiley is a lecturer in the Monash Institute for Cognitive and Clinical Neurosciences and School of Psychological Sciences at Monash University and a senior partner at Elkhart Group Limited, a statistical consultancy. He earned his PhD from the University of California, Los Angeles, and his research focuses on using advanced quantitative methods to understand the complex interplays of psychological, social, and physiological processes in relation to psychological and physical health. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. Through consulting at Elkhart Group Limited and former work at the UCLA Statistical Consulting Group, he has supported a wide array of clients ranging from graduate students, to experienced researchers, and biotechnology companies. He also develops or co-develops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.
作者簡介(中文翻譯)
**馬特·懷利**(Matt Wiley)是數學的終身副教授,曾獲得數學教育和榮譽學生參與方面的獎項。他通過加州大學和德州農工大學系統獲得純數學、計算機科學和商業管理的學位。他擔任維多利亞學院的質量提升計劃主任,以及統計諮詢公司Elkhart Group Limited的管理合夥人。擁有R、C++、Ruby、Fortran和JavaScript的編程經驗,他總是能找到將寫作熱情與邏輯問題解決和數據科學的樂趣結合起來的方法。從董事會到課堂,馬特喜歡尋找動態的方式與跨學科和多元化的團隊合作,使複雜的想法和項目變得易於理解和解決。
**約書亞·F·懷利**(Joshua F. Wiley)是莫納什大學認知與臨床神經科學研究所及心理科學學院的講師,也是統計諮詢公司Elkhart Group Limited的高級合夥人。他在加州大學洛杉磯分校獲得博士學位,研究重點是使用先進的定量方法來理解心理、社會和生理過程在心理和身體健康方面的複雜相互作用。在統計和數據科學領域,約書亞專注於生物統計學,並對可重複研究和數據及統計模型的圖形展示感興趣。通過在Elkhart Group Limited的諮詢工作以及在UCLA統計諮詢小組的前期工作,他支持了從研究生到經驗豐富的研究人員以及生物技術公司的各類客戶。他還開發或共同開發了多個R套件,包括varian,一個用於進行貝葉斯尺度-位置結構方程模型的套件,以及MplusAutomation,一個將R與商業Mplus軟件連接的流行套件。