Python Machine Learning By Example : Industry adopted applications with the clear demonstration of Machine Learning concepts using Python libraries, 2/e
暫譯: Python 機器學習實例:行業應用與 Python 函式庫清晰展示機器學習概念,第二版
Yuxi (Hayden) Liu
- 出版商: Packt Publishing
- 出版日期: 2019-02-28
- 定價: $1,400
- 售價: 6.0 折 $840
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 1789616727
- ISBN-13: 9781789616729
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
Python 機器學習案例教程, 2/e (Python Machine Learning By Example : Industry adopted applications with the clear demonstration of Machine Learning concepts using Python libraries, 2/e) (簡中版)
-
其他版本:
Python Machine Learning by Example : Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn, 3/e (Paperback)
相關主題
商品描述
Grasp machine learning techniques and algorithms with Python, TensorFlow and scikit through real-world examples
Key Features
- Exploit the power of Python to dive deep into the world of data mining and analytics
- Learn machine learning algorithms to solve complex challenges faced by data scientists today
- Use modern Python libraries like Tensorflow and Keras to create smart cognitive actions for your projects
Book Description
A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning.
This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data visualization and preprocessing, feature engineering, classification, regression, clustering, natural language processing, and model performance evaluation, as well as large-scale learning. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms - they are no more obscure as they thought. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques.
Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python, and popular Python packages and tools such as TensorFlow, scikit-learn, NLTK, and Spark. Interesting and easy-to-follow examples, to name some, news topic modeling and classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.
What you will learn
- Understand the important concepts in machine learning and data science
- Exploit the power of Python to dive deep into the world of data mining and analytics
- Scale up model training to million and more data points using Apache Hadoop and Spark
- Delve deep into text and natural language processing using Python library such NLTK and Gensim
- Select and build a machine learning model, evaluate its performance and optimize it
- Master the Implementation of popular classification, regression, clustering and feature engineering algorithms both from scratch in Python and using TensorFlow and scikit-learn
Who This Book Is For
This book is for Machine Learning Aspirants, Data Analysts, Data Engineers who are highly passionate about Machine Learning and wants to start getting employed in Machine Learning assignments. Prior knowledge of python coding is assumed and basic familiarity with the statistical concept is beneficial although not a mandate
商品描述(中文翻譯)
**掌握使用 Python、TensorFlow 和 scikit 的機器學習技術和算法,透過實際案例**
**主要特點**
- 利用 Python 的強大功能深入探索數據挖掘和分析的世界
- 學習機器學習算法以解決當今數據科學家面臨的複雜挑戰
- 使用現代 Python 庫如 TensorFlow 和 Keras 為您的項目創建智能認知行為
**書籍描述**
對機器學習的興趣再度上升,這是由於使數據挖掘和貝葉斯分析比以往更受歡迎的相同因素。本書是您進入機器學習的入門點。
本書首先介紹機器學習和 Python 語言,並展示如何完成設置。接下來,您將學習所有重要概念,例如探索性數據分析、數據可視化和預處理、特徵工程、分類、回歸、聚類、自然語言處理以及模型性能評估,還有大規模學習。在各種項目的幫助下,您會發現掌握幾個重要機器學習算法的機制是多麼有趣——它們不再像想像中那麼晦澀。最後,您將對機器學習生態系統和應用機器學習技術的最佳實踐有一個全面的了解。
通過本書,您將學會解決數據驅動的問題,並使用強大而簡單的語言 Python 以及流行的 Python 套件和工具,如 TensorFlow、scikit-learn、NLTK 和 Spark 實現您的解決方案。一些有趣且易於跟隨的例子,例如新聞主題建模和分類、垃圾郵件檢測、在線廣告點擊率預測、股票價格預測,將使您全神貫注,直到達成目標。
**您將學到的內容**
- 理解機器學習和數據科學中的重要概念
- 利用 Python 的強大功能深入探索數據挖掘和分析的世界
- 使用 Apache Hadoop 和 Spark 擴展模型訓練至百萬以上的數據點
- 深入研究文本和自然語言處理,使用 Python 庫如 NLTK 和 Gensim
- 選擇並構建機器學習模型,評估其性能並進行優化
- 精通流行的分類、回歸、聚類和特徵工程算法的實現,無論是從頭開始使用 Python 還是使用 TensorFlow 和 scikit-learn
**本書適合誰**
本書適合對機器學習充滿熱情的機器學習學習者、數據分析師和數據工程師,並希望開始從事機器學習相關工作的讀者。假設您具備 Python 編碼的先前知識,對統計概念的基本熟悉將是有益的,但並非必須。