Deep Learning from Scratch Building with Python from First Principles
Weidman, Seth
- 出版商: O'Reilly
- 出版日期: 2019-10-15
- 定價: $2,210
- 售價: 9.5 折 $2,100
- 貴賓價: 9.0 折 $1,989
- 語言: 英文
- 頁數: 252
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492041416
- ISBN-13: 9781492041412
-
相關分類:
Python、程式語言、Scratch、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$580$458 -
$469推薦系統
-
$460$391 -
$880$748 -
$653客戶留存數據分析與預測
-
$650$455 -
$2,185$2,070 -
$750$593 -
$680$537
相關主題
商品描述
With the reinvigoration of neural networks in the 2000s, deep learning is now paving the way for modern machine learning. This practical book provides a solid foundation in how deep learning works for data scientists and software engineers with a background in machine learning.
Author Seth Weidman shows you how to implement multilayer neural networks, convolutional neural networks, and recurrent neural networks from scratch. Using these networks as building blocks, you'll learn how to build advanced architectures such as image captioning and Neural Turing machines (NTMs). You'll also explore the math behind the theories.
商品描述(中文翻譯)
隨著神經網絡在2000年代的再度興起,深度學習現在為現代機器學習鋪平了道路。這本實用書為具備機器學習背景的數據科學家和軟體工程師提供了深度學習的堅實基礎。
作者Seth Weidman向您展示如何從頭開始實現多層神經網絡、卷積神經網絡和循環神經網絡。通過使用這些網絡作為構建塊,您將學習如何構建高級架構,例如圖像字幕生成和神經圖靈機(NTMs)。您還將探索這些理論背後的數學原理。
作者簡介
Seth Weidman is a data scientist who has applied and taught machine learning concepts for several years. He started out as the first data scientist at Trunk Club, where he built lead scoring models and recommender systems, and currently works at Facebook, where he builds machine learning models for their infrastructure team. In between he taught data science and machine learning for the bootcamps and on the corporate training team at Metis. He is passionate about explaining complex concepts simply, striving to find the simplicity on the other side of complexity.
作者簡介(中文翻譯)
Seth Weidman 是一位資料科學家,多年來一直應用和教授機器學習的概念。他最初在 Trunk Club 擔任首位資料科學家,建立了潛在客戶評分模型和推薦系統,目前在 Facebook 工作,為他們的基礎架構團隊建立機器學習模型。期間,他在 Metis 的訓練營和企業培訓團隊教授資料科學和機器學習。他熱衷於以簡單的方式解釋複雜的概念,努力在複雜性的另一面找到簡潔性。