A First Course in Machine Learning, 2/e (Hardcover)
暫譯: 機器學習入門課程(第二版,精裝本)
Simon Rogers, Mark Girolami
- 出版商: CRC
- 出版日期: 2016-07-18
- 售價: $2,980
- 貴賓價: 9.5 折 $2,831
- 語言: 英文
- 頁數: 427
- 裝訂: Turtleback
- ISBN: 1498738486
- ISBN-13: 9781498738484
-
相關分類:
Machine Learning
-
其他版本:
A First Course in Machine Learning
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$921Probability, Random Variables and Random Signal Principles, 4/e (IE-Paperback)
-
$3,500$3,325 -
$1,575$1,496 -
$4,550$4,323 -
$1,200$1,140 -
$1,850$1,758 -
$360$252 -
$680$537 -
$1,362Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)
-
$1,362Introduction to Machine Learning, 3/e (Hardcover)
-
$780$616 -
$360$284 -
$520$406 -
$580$452 -
$680$530 -
$580$458 -
$590$502 -
$1,617Deep Learning (Hardcover)
-
$500$395 -
$360$180 -
$580$458 -
$480$379 -
$590$460 -
$390$257 -
$580$458
相關主題
商品描述
"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."
―Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden
"This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."
―Daniel Barbara, George Mason University, Fairfax, Virginia, USA
"The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts."
―Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark
"I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength…Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."
―David Clifton, University of Oxford, UK
"The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book."
―Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK
"This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning…The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective."
―Guangzhi Qu, Oakland University, Rochester, Michigan, USA
商品描述(中文翻譯)
「機器學習入門」由 Simon Rogers 和 Mark Girolami 所著,是目前最好的機器學習入門書籍。它結合了嚴謹性和精確性,並且易於理解,從最簡單的情境中詳細解釋貝葉斯分析的基本基礎,一直到無限混合模型、GP 和 MCMC 等主題的前沿。
―Devdatt Dubhashi,瑞典查爾默斯科技大學計算機科學與工程系教授
「這本教科書在保持所需的嚴謹處理的同時,讀起來比其他類似書籍更容易。新章節使其在該領域處於前沿,涵蓋了過去十年來在機器學習中已成為主流的主題。」
―Daniel Barbara,美國維吉尼亞州喬治梅森大學
「Rogers 和 Girolami 的《機器學習入門》新版本是統計方法在機器學習中應用的優秀入門書。這本書介紹了數學建模、推理和預測等概念,並提供了讀者理解這些概念所需的線性代數、微積分和概率論的基本背景,這些背景是『及時提供』的。」
―Daniel Ortiz-Arroyo,丹麥奧爾堡大學埃斯比約副教授
「我對這本書的內容與機器學習入門課程需求的緊密對應感到印象深刻,這是它最大的優勢……總的來說,這是一本務實且有幫助的書,與入門課程的需求非常契合,我會在接下來的幾個月中為我的學生參考這本書。」
―David Clifton,英國牛津大學
「這本書的第一版已經是針對高年級本科生或授課碩士課程的優秀機器學習入門教材,或者對任何想要了解這一有趣且重要的計算機科學領域的人來說都是如此。關於高斯過程、MCMC 和混合建模的附加章節提供了實踐項目的理想基礎,而不會干擾書籍前半部分中非常清晰易讀的基本內容。」
―Gavin Cawley,英國東安格利亞大學計算科學學院高級講師
「這本書可以用於大學三年級/四年級學生或一年級研究生,以及希望探索機器學習領域的個人……這本書不僅介紹了概念,還從批判性思維的角度介紹了算法實現的基本思想。」
―Guangzhi Qu,美國密歇根州奧克蘭大學