Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks (Paperback)
暫譯: C++ 與 CUDA C 深度信念網絡:第一卷:限制玻爾茲曼機與監督式前饋網絡 (平裝本)

Timothy Masters

  • 出版商: CreateSpace Independ
  • 出版日期: 2015-02-11
  • 售價: $2,030
  • 貴賓價: 9.5$1,929
  • 語言: 英文
  • 頁數: 244
  • 裝訂: Paperback
  • ISBN: 1507751478
  • ISBN-13: 9781507751473
  • 相關分類: C++ 程式語言CUDA
  • 無法訂購

買這商品的人也買了...

相關主題

商品描述

Deep belief nets are one of the most exciting recent developments in artificial intelligence. The structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. A typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. This book presents the essential building blocks of the most common forms of deep belief nets. At each step the text provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the DEEP program which implements these algorithms, are available for free download from the author’s website.

商品描述(中文翻譯)

深度信念網絡是人工智慧領域中最近最令人興奮的發展之一。這些優雅模型的結構與傳統神經網絡相比,更接近人類大腦的結構;它們擁有一種能夠從更簡單的基本元素中學習抽象概念的「思考過程」。一個典型的深度信念網絡可以通過優化數百萬個參數來學習識別複雜的模式,然而這種模型仍然能夠抵抗過擬合。這本書介紹了最常見的深度信念網絡形式的基本構建塊。在每一步中,文本提供了直觀的動機、與主題相關的最重要方程式的摘要,並以高度註解的代碼結束,這些代碼適用於現代 CPU 的線程計算以及在具備 CUDA 功能的顯示卡的計算機上進行大規模並行處理。書中所呈現的所有例程的源代碼,以及實現這些算法的 DEEP 程式,均可從作者的網站免費下載。