Deep Learning with Pytorch (Paperback)
暫譯: 使用 Pytorch 的深度學習 (平裝本)
Stevens, Eli, Antiga, Luca
- 出版商: Manning
- 出版日期: 2020-08-04
- 售價: $1,990
- 貴賓價: 9.5 折 $1,891
- 語言: 英文
- 頁數: 450
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1617295264
- ISBN-13: 9781617295263
-
相關分類:
DeepLearning
-
相關翻譯:
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch) (繁中版)
PyTorch 深度學習實戰 (Deep Learning with Pytorch) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,805Test-Driven Development: By Example (Paperback)
-
$3,500$3,325 -
$2,993The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e (Hardcover)
-
$2,090$1,980 -
$1,880$1,786 -
$332深度學習框架 PyTorch : 入門與實踐
-
$2,640Natural Language Processing with PyTorch
-
$1,750$1,715 -
$1,570$1,492 -
$650$514 -
$2,100$1,995 -
$1,646Using Asyncio in Python: Understanding Python's Asynchronous Programming Features
-
$1,680Deep Reinforcement Learning Hands-On, 2/e (Paperback)
-
$1,200$948 -
$1,758$1,665 -
$880$695 -
$1,350$1,283 -
$374PyTorch 深度學習實戰
-
$1,080$853 -
$580$458 -
$2,464Head First Design Patterns: Building Extensible and Maintainable Object-Oriented Software, 2/e (Paperback)
-
$1,000$790 -
$1,000$790 -
$1,742Learning Git: A Hands-On and Visual Guide to the Basics of Git (Paperback)
-
$4,230$4,019
相關主題
商品描述
Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you, and your deep learning skills, become more sophisticated.
Deep Learning with PyTorch teaches you how to implement deep learning algorithms with Python and PyTorch. This book takes you into a fascinating case study: building an algorithm capable of detecting malignant lung tumors using CT scans. As the authors guide you through this real example, you'll discover just how effective and fun PyTorch can be.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
商品描述(中文翻譯)
每隔一天,我們就會聽到有關深度學習的新應用方式:改進的醫療影像、準確的信用卡詐騙檢測、長期天氣預報等等。PyTorch 將這些超能力放在你的手中,提供一個舒適的 Python 體驗,讓你快速入門,並隨著你和你的深度學習技能變得更加成熟而成長。
《Deep Learning with PyTorch》教你如何使用 Python 和 PyTorch 實現深度學習算法。本書帶你進入一個引人入勝的案例研究:建立一個能夠使用 CT 掃描檢測惡性肺腫瘤的算法。在作者的指導下,你將發現 PyTorch 是多麼有效且有趣。
購買印刷版書籍可獲得 Manning Publications 提供的免費電子書,格式包括 PDF、Kindle 和 ePub。
作者簡介
Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software.
Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch.
作者簡介(中文翻譯)
Eli Stevens 在矽谷工作了15年,擔任軟體工程師,並在過去7年擔任一家醫療設備軟體初創公司的首席技術官。
Luca Antiga 是位於義大利貝爾加莫的人工智慧工程公司的共同創辦人及執行長,並且是PyTorch的定期貢獻者。
目錄大綱
Part 1 Part 1. Core PyTorch
1 Introducing Deep Learning and the PyTorch Library
2 Pre-Trained Networks
3 It Starts with a Tensor
4 Real-World Data Representation Using Tensors
5 The Mechanics of Learning
6 Using A Neural Network To Fit the Data
7 Telling Birds from Airplanes: Learning from Images
8 Using Convolutions To Generalize
Part 2 Part 2. Learning from Images in the Real-World: Early Detection of Lung Cancer
9 Using PyTorch To Fight Cancer
10 Ready, Dataset, Go!
11 Training A Classification Model To Detect Suspected Tumors
12 Monitoring Metrics: Precision, Recall, and Pretty Pictures
13 Using Segmentation To Find Suspected Nodules
14 End-to-end nodule analysis, and where to go next
Part 3 Part 3. Deployment
15 Deploying to production
目錄大綱(中文翻譯)
Part 1 Part 1. Core PyTorch
1 Introducing Deep Learning and the PyTorch Library
2 Pre-Trained Networks
3 It Starts with a Tensor
4 Real-World Data Representation Using Tensors
5 The Mechanics of Learning
6 Using A Neural Network To Fit the Data
7 Telling Birds from Airplanes: Learning from Images
8 Using Convolutions To Generalize
Part 2 Part 2. Learning from Images in the Real-World: Early Detection of Lung Cancer
9 Using PyTorch To Fight Cancer
10 Ready, Dataset, Go!
11 Training A Classification Model To Detect Suspected Tumors
12 Monitoring Metrics: Precision, Recall, and Pretty Pictures
13 Using Segmentation To Find Suspected Nodules
14 End-to-end nodule analysis, and where to go next
Part 3 Part 3. Deployment
15 Deploying to production