Aspects of Differential Geometry I
暫譯: 微分幾何的各個面向 I
Peter Gilkey, JeongHyeong Park, Ramón Vázquez-Lorenzo
- 出版商: Morgan & Claypool
- 出版日期: 2015-02-01
- 售價: $1,600
- 貴賓價: 9.5 折 $1,520
- 語言: 英文
- 頁數: 154
- 裝訂: Paperback
- ISBN: 1627056629
- ISBN-13: 9781627056625
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,450$1,421 -
$1,150$1,127 -
$1,100$1,078 -
$1,100$1,078 -
$2,680$2,546 -
$6,720$6,384 -
$1,680$1,646 -
$880$862 -
$1,200$1,176 -
$670$657 -
$560$549 -
$790$774 -
$680$666 -
$3,300$3,135 -
$2,030$1,929 -
$820$804 -
$1,600$1,520 -
$1,400$1,372 -
$2,070$1,967 -
$1,470Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition (Paperback)
-
$1,960$1,921 -
$1,830$1,793 -
$1,600$1,568 -
$1,480$1,450 -
$3,270$3,107
相關主題
商品描述
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. In Book I, we focus on preliminaries. Chapter 1 provides an introduction to multivariable calculus and treats the Inverse Function Theorem, Implicit Function Theorem, the theory of the Riemann Integral, and the Change of Variable Theorem. Chapter 2 treats smooth manifolds, the tangent and cotangent bundles, and Stokes' Theorem. Chapter 3 is an introduction to Riemannian geometry. The Levi-Civita connection is presented, geodesics introduced, the Jacobi operator is discussed, and the Gauss-Bonnet Theorem is proved. The material is appropriate for an undergraduate course in the subject. We have given some different proofs than those that are classically given and there is some new material in these volumes. For example, the treatment of the Chern-Gauss-Bonnet Theorem for pseudo-Riemannian manifolds with boundary is new.
Table of Contents: Preface / Acknowledgments / Basic Notions and Concepts / Manifolds / Riemannian and Pseudo-Riemannian Geometry / Bibliography / Authors' Biographies / Index
商品描述(中文翻譯)
微分幾何是一個廣泛的領域。我們選擇專注於某些適合該主題入門的方面;並未嘗試進行百科全書式的處理。在第一卷中,我們專注於基礎知識。第一章介紹多變數微積分,並討論反函數定理、隱函數定理、黎曼積分理論以及變數變換定理。第二章探討光滑流形、切束和共切束,以及斯托克斯定理。第三章是黎曼幾何的介紹,介紹了Levi-Civita連接,地質線的概念,討論了Jacobi算子,並證明了高斯-博內定理。這些材料適合本科課程使用。我們提供了一些與傳統證明不同的證明,並且這些卷中有一些新材料。例如,對於具有邊界的偽黎曼流形的Chern-Gauss-Bonnet定理的處理是新的。
目錄:前言 / 致謝 / 基本概念與概念 / 流形 / 黎曼幾何與偽黎曼幾何 / 參考文獻 / 作者簡介 / 索引