Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
暫譯: 強化學習驅動的混合電動車智能能源管理
Liu, Teng, Khajepour, Amir
- 出版商: Morgan & Claypool
- 出版日期: 2019-09-03
- 售價: $1,600
- 貴賓價: 9.5 折 $1,520
- 語言: 英文
- 頁數: 100
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1681736187
- ISBN-13: 9781681736181
-
相關分類:
Reinforcement、DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.
Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.
In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
商品描述(中文翻譯)
**動力系統電氣化、燃料去碳化和能源多樣化是正在全球範圍內推廣的技術,這些技術促進了更清潔和更高效的車輛。**
混合電動車(HEVs)被視為當今應對日益嚴重的空氣污染和能源匱乏的有前景技術。為了實現這些收益並保持良好的性能,HEVs 需要具備複雜的能源管理系統。在這樣的系統監控下,HEVs 可以在不同模式下運行,例如全電模式和動力分配模式。因此,研究和構建先進的能源管理策略(EMS)對於 HEVs 的性能至關重要。目前有一些關於基於規則和優化的方法來制定能源管理系統的書籍。大多數書籍關注傳統技術,並且其努力集中在離線尋找最佳控制策略上。仍然有很大的空間引入基於人工智慧的學習驅動能源管理系統及其實時評估和應用。
在本書中,考慮了一種串聯混合電動車作為動力系統模型,以描述和分析一個基於強化學習(RL)的智能能源管理系統。所提出的系統不僅能整合預測的道路信息,還能實現在線學習和更新。涉及詳細的動力系統建模、預測算法和在線更新技術,並對所呈現的能源管理系統進行評估和驗證。