Practical Data Science Cookbook
暫譯: 實用數據科學食譜

Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta

相關主題

商品描述

89 hands-on recipes to help you complete real-world data science projects in R and Python

About This Book

  • Learn about the data science pipeline and use it to acquire, clean, analyze, and visualize data
  • Understand critical concepts in data science in the context of multiple projects
  • Expand your numerical programming skills through step-by-step code examples and learn more about the robust features of R and Python

Who This Book Is For

If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

In Detail

As increasing amounts of data is generated each year, the need to analyze and operationalize it is more important than ever. Companies that know what to do with their data will have a competitive advantage over companies that don't, and this will drive a higher demand for knowledgeable and competent data professionals.

Starting with the basics, this book will cover how to set up your numerical programming environment, introduce you to the data science pipeline (an iterative process by which data science projects are completed), and guide you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples in the two most popular programming languages for data analysis—R and Python.

商品描述(中文翻譯)

**89 個實作食譜,幫助您在 R 和 Python 中完成真實世界的資料科學專案**

## 本書介紹
- 了解資料科學流程,並利用它來獲取、清理、分析和視覺化資料
- 在多個專案的背景下理解資料科學中的關鍵概念
- 通過逐步的程式碼範例擴展您的數值程式設計技能,並深入了解 R 和 Python 的強大功能

## 本書適合誰
如果您是一位渴望成為資料科學家的新手,想通過實作的真實專案範例來學習資料科學和數值程式設計概念,那麼這本書就是為您而寫。無論您是資料科學的新手還是經驗豐富的專家,您都將從學習資料科學專案的結構、資料科學流程中的步驟以及本書中提供的程式範例中受益。由於本書的格式設計是為了引導您逐步完成專案,並在過程中提供範例和解釋,因此不需要任何先前的程式設計經驗。

## 詳細內容
隨著每年產生的資料量不斷增加,分析和運用這些資料的需求比以往任何時候都更為重要。知道如何處理資料的公司將比不知道的公司擁有競爭優勢,這將驅動對知識淵博且能力出眾的資料專業人士的需求上升。

從基礎開始,本書將涵蓋如何設置您的數值程式設計環境,介紹資料科學流程(這是一個迭代過程,用於完成資料科學專案),並以逐步的格式引導您完成幾個資料專案。通過逐章依序完成每個步驟,您將迅速熟悉這一過程,並學會如何將其應用於各種情況,範例將使用兩種最受歡迎的資料分析程式語言——R 和 Python。