Mastering Machine Learning with scikit-learn, 2/e (Paperback)
暫譯: 精通機器學習與 scikit-learn, 第2版 (平裝本)

Gavin Hackeling

  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-1
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-2
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-3
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-4
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-5
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-6
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-7
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-8
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-9
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-10
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-11
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-12
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-13
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-14
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-15
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-16
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-17
  • Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-18
Mastering Machine Learning with scikit-learn, 2/e (Paperback)-preview-1

買這商品的人也買了...

相關主題

商品描述

Key Features

  • Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks
  • Learn how to build and evaluate performance of efficient models using scikit-learn
  • Practical guide to master your basics and learn from real life applications of machine learning

Book Description

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model.

This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance.

By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.

What you will learn

  • Review fundamental concepts such as bias and variance
  • Extract features from categorical variables, text, and images
  • Predict the values of continuous variables using linear regression and K Nearest Neighbors
  • Classify documents and im4:22 PM 8/2/2017ages using logistic regression and support

商品描述(中文翻譯)

主要特點

- 精通流行的機器學習模型,包括 k-nearest neighbors、隨機森林、邏輯回歸、k-means、朴素貝葉斯和人工神經網絡
- 學習如何使用 scikit-learn 構建和評估高效模型的性能
- 實用指南,幫助你掌握基礎並從機器學習的實際應用中學習

書籍描述

機器學習是將計算機科學和統計學結合在一起以構建智能和高效模型的流行詞彙。利用機器學習提供的強大算法和技術,你可以自動化任何分析模型。

本書探討各種機器學習模型,包括流行的機器學習算法,如 k-nearest neighbors、邏輯回歸、朴素貝葉斯、k-means、決策樹和人工神經網絡。它討論數據預處理、超參數優化和集成方法。你將構建系統來分類文檔、識別圖像、檢測廣告等。你將學會使用 scikit-learn 的 API 從類別變量、文本和圖像中提取特徵;評估模型性能,並發展改善模型性能的直覺。

在本書結束時,你將掌握使用 scikit-learn 構建高效模型所需的所有概念,以便在工作中執行高級任務,並採用實用的方法。

你將學到的內容

- 回顧基本概念,如偏差和方差
- 從類別變量、文本和圖像中提取特徵
- 使用線性回歸和 K Nearest Neighbors 預測連續變量的值
- 使用邏輯回歸和支持向量機分類文檔和圖像