Neural Networks with R
Giuseppe Ciaburro, Balaji Venkateswaran
- 出版商: Packt Publishing
- 出版日期: 2017-09-27
- 售價: $1,810
- 貴賓價: 9.5 折 $1,720
- 語言: 英文
- 頁數: 270
- 裝訂: Paperback
- ISBN: 1788397878
- ISBN-13: 9781788397872
-
相關翻譯:
神經網絡:R語言實現 (簡中版)
相關主題
商品描述
Key Features
- Develop a strong background in neural networks with R, to implement them in your applications
- Learn how to build and train neural network models to solve complex problems Implement solutions from scratch
- Covering real-world case studies to illustrate the power of neural network models
Book Description
Neural networks in one of the most fascinating machine learning model to solve complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book will give you a rundown explaining the niche aspects of neural networking which will provide you with a foundation to get start with the advanced topics. We start off with neural network design using neuralnet package, then you'll build a solid foundational knowledge of how a neural network learns from data, and the principles behind it. This book cover various types of neural networks including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but also see a generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases.By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples mentioned in the book.
What you will learn
- Setup R packages for neural networks and deep learning
- Understand the core concepts of artificial neural networks
- Understand neurons, perceptron, bias, weights and activation functions
- Implement supervised and unsupervised machine learning in R for neural networks
- Predict and classify data automatically using neural networks
- Evaluate and fine tune the models built.
商品描述(中文翻譯)
《書名》的關鍵特點:
- 使用 R 建立強大的神經網絡背景,並將其應用於您的應用程序中。
- 學習如何從頭開始構建和訓練神經網絡模型以解決複雜問題。
- 通過實際案例研究來展示神經網絡模型的威力。
《書名》的描述:
神經網絡是一種非常迷人的機器學習模型,可以高效地解決複雜的計算問題。神經網絡被用於解決人工智能和機器學習領域的各種問題。本書將向您介紹神經網絡的專業知識,為您打下基礎,使您能夠進一步學習高級主題。我們首先使用 neuralnet 套件設計神經網絡,然後您將建立對神經網絡如何從數據中學習以及背後原理的扎實基礎知識。本書涵蓋了各種類型的神經網絡,包括循環神經網絡和卷積神經網絡。您不僅將學習如何訓練神經網絡,還將看到這些網絡的泛化能力。之後,我們將深入研究結合不同神經網絡模型並應用於真實世界案例。通過閱讀本書,您將學習如何在應用程序中實現神經網絡模型,並通過書中提到的實際示例進行應用。
您將學到的內容:
- 設置 R 套件以進行神經網絡和深度學習。
- 理解人工神經網絡的核心概念。
- 理解神經元、感知器、偏差、權重和激活函數。
- 在 R 中實現監督和非監督機器學習以進行神經網絡。
- 使用神經網絡自動預測和分類數據。
- 評估和優化所建立的模型。