Deep Learning with TensorFlow - Second Edition: Explore neural networks with Python
暫譯: 使用 TensorFlow 的深度學習 - 第二版:用 Python 探索神經網絡
Giancarlo Zaccone, Md. Rezaul Karim
- 出版商: Packt Publishing
- 出版日期: 2018-03-29
- 定價: $1,360
- 售價: 8.0 折 $1,088
- 語言: 英文
- 頁數: 484
- 裝訂: Paperback
- ISBN: 1788831101
- ISBN-13: 9781788831109
-
相關分類:
Python、程式語言、DeepLearning、TensorFlow
-
相關翻譯:
TensorFlow深度學習(原書第2版) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,058Data Structures and Algorithms in Python (Hardcover)
-
$580$452 -
$360$281 -
$4,730$4,494 -
$1,880$1,786 -
$454Jenkins 權威指南
-
$1,617Deep Learning (Hardcover)
-
$580$493 -
$480$379 -
$1,088Python Machine Learning, 2/e (Paperback)
-
$560$476 -
$780$663 -
$450$356 -
$1,960Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python
-
$1,128PySpark Recipes: A Problem-Solution Approach with PySpark2
-
$1,830$1,739 -
$1,280Natural Language Processing with TensorFlow
-
$523$497 -
$720$569 -
$690$538 -
$749Building Django 2.0 Web Applications: Create enterprise-grade, scalable Python web applications easily with Django 2.0
-
$1,927Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning
-
$1,184Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
-
$1,280PyTorch Deep Learning Hands-On: Apply modern AI techniques with CNNs, RNNs, GANs, reinforcement learning, and more
-
$680$537
相關主題
商品描述
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of this comprehensive TensorFlow guide
Key Features
- Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow
- Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide
- Real-world contextualization through some deep learning problems concerning research and application
Book Description
Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data and has been fully updated to the latest version of TensorFlow 1.x.
Throughout the book, you'll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you'll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context.
After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects.
What you will learn
- Learn about machine learning landscapes along with the historical development and progress of deep learning
- Learn about deep machine intelligence and GPU computing with the latest TensorFlow 1.x
- Access public datasets and utilize them using TensorFlow to load, process, and transform data
- Use TensorFlow on real-world datasets, including images, text, and more
- Learn how to evaluate the performance of your deep learning models
- Using deep learning for scalable object detection and mobile computing
- Train machines quickly to learn from data by exploring reinforcement learning techniques
- Explore active areas of deep learning research and applications
Who This Book Is For
The book is intended for a general audience of people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.
商品描述(中文翻譯)
深入了解神經網絡,實現深度學習算法,並在這本全面的 TensorFlow 指南的幫助下探索數據抽象層
主要特點
- 學習如何使用 Google 的創新產品 TensorFlow 實現深度學習中的高級技術
- 在這本全面的指南中探索深度神經網絡和數據抽象層
- 通過一些與研究和應用相關的深度學習問題進行現實世界的情境化
書籍描述
深度學習是機器學習之後的一個步驟,並具有更高級的實現。機器學習不再僅僅是學術界的專利,而是通過廣泛的採用成為主流實踐,而深度學習則成為了焦點。作為一名數據科學家,如果你想探索數據抽象層,這本書將是你的指南。本書展示了如何在現實世界中利用複雜的原始數據,並已全面更新至最新版本的 TensorFlow 1.x。
在整本書中,你將學習如何為機器學習系統實現深度學習算法,並將其整合到你的產品中,包括搜索、圖像識別和語言處理。此外,你還將學習如何分析和改進深度學習模型的性能。這可以通過將算法與基準進行比較,以及機器智能,來學習信息並確定在特定上下文中的理想行為。
完成本書後,你將熟悉機器學習技術,特別是使用 TensorFlow 進行深度學習,並準備將你的知識應用於研究或商業項目。
你將學到什麼
- 了解機器學習的全景以及深度學習的歷史發展和進展
- 了解深度機器智能和最新的 TensorFlow 1.x 中的 GPU 計算
- 訪問公共數據集並使用 TensorFlow 加載、處理和轉換數據
- 在現實世界數據集上使用 TensorFlow,包括圖像、文本等
- 學習如何評估你的深度學習模型的性能
- 使用深度學習進行可擴展的物體檢測和移動計算
- 快速訓練機器從數據中學習,探索強化學習技術
- 探索深度學習研究和應用的活躍領域
本書適合誰
本書適合對機器學習和機器智能感興趣的一般讀者。假設讀者具備一種編程語言的基本編程能力,以及對計算機科學技術和技術的基本熟悉,包括對計算機硬體和算法的基本認識。需要具備一定的數學能力,至少達到初等線性代數和微積分的水平。