Hands-On Machine Learning with C#: Building smarter, speedy and reliable data-intensive applications using machine learning
Matt R. Cole
- 出版商: Packt Publishing
- 出版日期: 2018-05-24
- 售價: $1,380
- 貴賓價: 9.5 折 $1,311
- 語言: 英文
- 頁數: 274
- 裝訂: Paperback
- ISBN: 1788994949
- ISBN-13: 9781788994941
-
相關分類:
C#、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,820Assembly Language Step-by-Step: Programming with Linux, 3/e (Paperback)
-
$620$558 -
$450$356 -
$480$379 -
$650$507 -
$420$332 -
$580$458 -
$1,520$1,444 -
$1,380$1,311 -
$1,750$1,663 -
$390$308 -
$420$332 -
$880$748 -
$620$484 -
$580$458 -
$1,200$1,020 -
$580$452 -
$505自然語言處理實戰 : 利用 Python 理解、分析和生成文本
-
$780$663 -
$780$608 -
$1,850$1,758 -
$600$468 -
$650$513 -
$650$429 -
$2,800$2,660
相關主題
商品描述
Explore Supervised, Unsupervised Learning Techniques and Bring Smart Features to your Applications
Key Features
- Leverage Machine Learning techniques to build smart, predictive and real-world applications
- Accord.Net machine learning framework for reinforcement learning
- Machine learning techniques using various libraries-Accord, Numl, Encog
Book Description
In our daily work which is predominantly Information Technology, the necessity of machine learning is everywhere and demanded by all developers, programmers, and analysts. But why C# for machine learning? The answer is most of the Microsoft enterprise applications are written in C# such as Visual Studio, SQL Server, Photoshop and various mobile applications, Unity platform, Microsoft Azure, StackOverflow and so on.
This book develops the intuitive understanding of various concepts, techniques of machine learning and various available machine learning tools through which they can add intelligent features such as sentiment detection, speech recognition, language understanding, smart search and so on to C# and .NET applications.
Using this book, you will implement supervised and unsupervised learning algorithms and will be getting well equipped to create better predictive models. You will learn numerous techniques and algorithms right from a simple linear regression, decision trees, SVM to advanced concepts such as artificial neural networks, autoencoders, and reinforcement learning.
By the end of this book, the readers will develop a machine learning mindset and can leverage the tools, techniques, and packages of C# in building smart, predictive and real-world business applications
What you will learn
- Learn how to parameterize a probabilistic problem
- Use Naïve Bayes to visually plot and analyze data
- Plot a text-based representation of a decision tree using numl
- Use the Accord.Net machine learning framework for associative rule-based learning
- Develop machine learning algorithms utilizing fuzzy logic
- Explore Support Vector Machines for image recognition
- Understand Dynamic Time Warping for sequence recognition
Who This Book Is For
This book is meant for all developers and programmers working on a range of platforms from .NET and Windows to mobile devices. Basic knowledge of statistics is required.
商品描述(中文翻譯)
探索監督式和非監督式學習技術,並將智能功能應用於您的應用程式
主要特點
- 利用機器學習技術建立智能、預測性和實際應用程式
- 使用 Accord.Net 機器學習框架進行強化學習
- 使用各種庫進行機器學習技術-Accord、Numl、Encog
書籍描述
在我們日常的工作中,機器學習的必要性無處不在,並且受到所有開發人員、程式設計師和分析師的需求。但為什麼選擇 C# 進行機器學習?答案是因為大多數微軟企業應用程式都是用 C# 編寫的,例如 Visual Studio、SQL Server、Photoshop 和各種移動應用程式、Unity 平台、Microsoft Azure、StackOverflow 等等。
本書通過直觀理解各種概念、機器學習技術和各種可用的機器學習工具,使讀者能夠將智能功能(如情感檢測、語音識別、語言理解、智能搜索等)添加到 C# 和 .NET 應用程式中。
通過本書,您將實現監督式和非監督式學習算法,並將獲得更好的預測模型。您將學習從簡單的線性回歸、決策樹、支持向量機到高級概念(如人工神經網絡、自編碼器和強化學習)的眾多技術和算法。
通過閱讀本書,讀者將培養機器學習思維,並能夠利用 C# 的工具、技術和套件來構建智能、預測性和實際的商業應用程式。
您將學到什麼
- 學習如何對概率問題進行參數化
- 使用 Naïve Bayes 進行視覺化繪圖和數據分析
- 使用 numl 繪製基於文本的決策樹表示
- 使用 Accord.Net 機器學習框架進行關聯規則學習
- 利用模糊邏輯開發機器學習算法
- 探索支持向量機進行圖像識別
- 了解動態時間彎曲進行序列識別
適合閱讀對象
本書適用於從.NET 和 Windows 到移動設備等各種平台上工作的所有開發人員和程式設計師。需要基本的統計知識。