Hands-On Neural Network Programming with C#: Add powerful neural network capabilities to your C# enterprise applications
暫譯: C# 實作神經網路程式設計:為您的 C# 企業應用程式增添強大的神經網路功能
Matt R. Cole
- 出版商: Packt Publishing
- 出版日期: 2018-09-28
- 售價: $1,380
- 貴賓價: 9.5 折 $1,311
- 語言: 英文
- 頁數: 328
- 裝訂: Paperback
- ISBN: 1789612012
- ISBN-13: 9781789612011
-
相關分類:
C#
-
相關翻譯:
C# 神經網絡編程 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,250$1,225 -
$625$563 -
$620$490 -
$1,820Assembly Language Step-by-Step: Programming with Linux, 3/e (Paperback)
-
$3,184Advances in Face Detection and Facial Image Analysis
-
$450$383 -
$480$408 -
$1,150$1,127 -
$1,617Deep Learning (Hardcover)
-
$420$332 -
$1,380$1,311 -
$301機器學習與深度學習:通過 C語言模擬
-
$1,520$1,444 -
$1,750$1,663 -
$602進化優化算法-基於仿生和種群的電腦智能方法
-
$880$748 -
$600$468 -
$620$484 -
$780$663 -
$600$468 -
$894$849 -
$2,050$1,948 -
$650$514 -
$650$429 -
$2,840$2,698
相關主題
商品描述
Create and unleash the power of neural networks by implementing C# and .Net code
Key Features
- Get a strong foundation of neural networks with access to various machine learning and deep learning libraries
- Real-world case studies illustrating various neural network techniques and architectures used by practitioners
- Cutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many more
Book Description
Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence.
The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks.
This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search.
Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications.
What you will learn
- Understand perceptrons and how to implement them in C#
- Learn how to train and visualize a neural network using cognitive services
- Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp
- Detect specific image characteristics such as a face using Accord.Net
- Demonstrate particle swarm optimization using a simple XOR problem and Encog
- Train convolutional neural networks using ConvNetSharp
- Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques.
Who this book is for
This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book
Table of Contents
- A Quick Refresher
- Building our first Neural Network Together
- Decision Tress and Random Forests
- Face and Motion Detection
- Training CNNs using ConvNetSharp
- Training Autoencoders Using RNNSharp
- Replacing Back Propagation with PSO
- Function Optimizations; How and Why
- Finding Optimal Parameters
- Object Detection with TensorFlowSharp
- Time Series Prediction and LSTM Using CNTK
- GRUs Compared to LSTMs, RNNs, and Feedforward Networks
- Appendix A- Activation Function Timings
- Appendix B- Function Optimization Reference
商品描述(中文翻譯)
透過實作 C# 和 .NET 代碼來創建並釋放神經網絡的力量
主要特點
- 獲得神經網絡的堅實基礎,並接觸各種機器學習和深度學習庫
- 真實案例研究,說明從業者使用的各種神經網絡技術和架構
- 前沿的深度網絡、優化算法、卷積網絡、自編碼器等的覆蓋
書籍描述
神經網絡在過去幾年中意外地回歸,並在人工智慧的世界中帶來了巨大的創新。
本書的目標是為 C# 程式設計師提供實用的指導,以使用神經網絡和 C# 庫(如 CNTK 和 TensorFlowSharp)解決複雜的計算挑戰。本書將帶您進行一步一步的實踐旅程,涵蓋從神經網絡的數學和理論方面,到將自己的深度神經網絡構建到 C# 和 .NET 框架中的應用程序。
本書首先為您提供神經網絡的快速回顧。您將學習如何使用 Encog、Aforge 和 Accord 等套件從零開始構建神經網絡。您將了解各種概念和技術,例如深度網絡、感知器、優化算法、卷積網絡和自編碼器。您將學習如何為您的 .NET 應用程序添加智能功能,例如面部和運動檢測、物體檢測和標記、語言理解、知識和智能搜索。
在本書中,您將進行有趣的演示,這將使您更容易在企業應用程序中實現複雜的神經網絡。
您將學到什麼
- 理解感知器及其在 C# 中的實現
- 學習如何使用認知服務訓練和可視化神經網絡
- 使用 C# 和 TensorFlowSharp 執行圖像識別以檢測和標記物體
- 使用 Accord.Net 檢測特定圖像特徵,例如面部
- 使用簡單的 XOR 問題和 Encog 演示粒子群優化
- 使用 ConvNetSharp 訓練卷積神經網絡
- 使用數值和啟發式優化技術為您的神經網絡函數尋找最佳參數。
本書適合誰
本書適合機器學習工程師、數據科學家、深度學習有志者和數據分析師,他們現在希望進入 C# 的高級機器學習和深度學習。需要具備機器學習的先前知識和 C# 程式設計的工作經驗,以便充分利用本書。
目錄
- 快速回顧
- 一起構建我們的第一個神經網絡
- 決策樹和隨機森林
- 面部和運動檢測
- 使用 ConvNetSharp 訓練 CNN
- 使用 RNNSharp 訓練自編碼器
- 用 PSO 替代反向傳播
- 函數優化;如何及為何
- 尋找最佳參數
- 使用 TensorFlowSharp 進行物體檢測
- 使用 CNTK 進行時間序列預測和 LSTM
- GRU 與 LSTM、RNN 和前饋網絡的比較
- 附錄 A - 激活函數時間
- 附錄 B - 函數優化參考