Caffe2 Quick Start Guide
暫譯: Caffe2 快速入門指南
Nanjappa, Ashwin
- 出版商: Packt Publishing
- 出版日期: 2019-05-31
- 售價: $1,250
- 貴賓價: 9.5 折 $1,188
- 語言: 英文
- 頁數: 136
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789137756
- ISBN-13: 9781789137750
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$825Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build (Paperback)
-
$280$238 -
$2,040$1,938 -
$352密碼學 (C\C++語言實現原書第2版)
-
$280$238 -
$210$200 -
$2,970$2,822 -
$1,520$1,444 -
$534$507 -
$480$379 -
$253基於 Android Studio 的案例教程, 2/e
-
$505深入淺出 Embedding:原理解析與應用實踐
-
$620$527 -
$234$222 -
$998Python for Cybersecurity: Using Python for Cyber Offense and Defense
-
$1,200$1,020 -
$449物聯網及低功耗藍牙5.x高級開發
-
$2,720$2,584 -
$414$393 -
$232STM32 單片機原理與應用
-
$620$484 -
$500$450 -
$380$323 -
$301嵌入式技術及應用 (STM32CubeMX版)
-
$1,000$790
商品描述
Caffe2 is a popular deep learning library used for fast and scalable training and inference of deep learning models on various platforms. This book introduces you to the Caffe2 framework and shows how you can leverage its power to build, train, and deploy efficient neural network models at scale.
It will cover the topics of installing Caffe2, composing networks using its operators, training models, and deploying models to different architectures. It will also show how to import models from Caffe and from other frameworks using the ONNX interchange format. It covers the topic of deep learning accelerators such as CPU and GPU and shows how to deploy Caffe2 models for inference on accelerators using inference engines. Caffe2 is built for deployment to a diverse set of hardware, using containers on the cloud and resource constrained hardware such as Raspberry Pi, which will be demonstrated.
By the end of this book, you will be able to not only compose and train popular neural network models with Caffe2, but also be able to deploy them on accelerators, to the cloud and on resource constrained platforms such as mobile and embedded hardware.
商品描述(中文翻譯)
Caffe2 是一個流行的深度學習庫,用於在各種平台上快速且可擴展地訓練和推斷深度學習模型。本書將介紹 Caffe2 框架,並展示如何利用其強大功能來構建、訓練和部署高效的神經網絡模型。
本書將涵蓋安裝 Caffe2、使用其運算元組成網絡、訓練模型以及將模型部署到不同架構的主題。它還將展示如何使用 ONNX 互換格式從 Caffe 和其他框架導入模型。本書將探討深度學習加速器的主題,例如 CPU 和 GPU,並展示如何使用推斷引擎在加速器上部署 Caffe2 模型進行推斷。Caffe2 是為了部署到多樣化的硬體而構建的,使用雲端的容器和資源受限的硬體,如 Raspberry Pi,這將在書中進行演示。
在本書結束時,您將不僅能夠使用 Caffe2 組成和訓練流行的神經網絡模型,還能夠將它們部署到加速器、雲端以及資源受限的平台,如移動設備和嵌入式硬體。