On Stein's Method for Infinitely Divisible Laws with Finite First Moment
暫譯: 關於具有有限第一矩的無限可分法則的斯坦方法
Arras, Benjamin, Houdre, Christian
- 出版商: Springer
- 出版日期: 2019-04-26
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 104
- 裝訂: Quality Paper - also called trade paper
- ISBN: 303015016X
- ISBN-13: 9783030150167
-
相關分類:
Amazon Web Services
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
商品描述(中文翻譯)
本書專注於當目標極限法則為具有有限第一矩的無限可分分佈時,弱極限定理的定量近似結果。提出並發展了兩種方法以獲得這些定量結果。這些方法的根基是一個在第三章中討論的 Stein 特徵化恆等式,該恆等式得益於無限可分分佈的協方差表示。第一種方法基於特徵函數和 Stein 類型的恆等式,當所涉及的隨機變數序列本身也是具有有限第一矩的無限可分時。特別地,基於這種技術,提出了無限可分分佈的複合泊松近似的定量版本。第二種方法是一種針對具有有限第一矩的單變量自解構法則的通用 Stein 方法。第六章關注應用,提供了一般的上界以量化獨立隨機變數和的經典弱極限定理中的收斂速率。本書旨在為從事概率論和數學統計的研究生和研究人員提供參考。