Multilayer Neural Networks: A Generalized Net Perspective (Studies in Computational Intelligence)
暫譯: 多層神經網絡:一種廣義網絡視角(計算智能研究)

Maciej Krawczak

  • 出版商: Springer
  • 出版日期: 2015-06-23
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 196
  • 裝訂: Paperback
  • ISBN: 3319033905
  • ISBN-13: 9783319033907
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The primary purpose of this book is to show that a multilayer neural network can be considered as a multistage system, and then that the learning of this class of neural networks can be treated as a special sort of the optimal control problem. In this way, the optimal control problem methodology, like dynamic programming, with modifications, can yield a new class of learning algorithms for multilayer neural networks.

Another purpose of this book is to show that the generalized net theory can be successfully used as a new description of multilayer neural networks. Several generalized net descriptions of neural networks functioning processes are considered, namely: the simulation process of networks, a system of neural networks and the learning algorithms developed in this book.

The generalized net approach to modelling of real systems may be used successfully for the description of a variety of technological and intellectual problems, it can be used not only for representing the parallel functioning of homogenous objects, but also for modelling non-homogenous systems, for example systems which consist of a different kind of subsystems.

The use of the generalized nets methodology shows a new way to describe functioning of discrete dynamic systems.

 

商品描述(中文翻譯)

本書的主要目的是展示多層神經網絡可以被視為一種多階段系統,並且這類神經網絡的學習可以被視為一種特殊的最優控制問題。透過這種方式,最優控制問題的方法論,例如動態規劃,經過修改後,可以產生一類新的多層神經網絡學習算法。

本書的另一個目的在於展示廣義網絡理論可以成功地用作多層神經網絡的新描述。考慮了幾種神經網絡運作過程的廣義網絡描述,即:網絡的模擬過程、一個神經網絡系統以及本書中開發的學習算法。

廣義網絡方法在實際系統建模中的應用可以成功地用於描述各種技術和智力問題,它不僅可以用於表示同質物體的並行運作,還可以用於建模非同質系統,例如由不同類型子系統組成的系統。

使用廣義網絡方法論顯示了一種描述離散動態系統運作的新方式。