Computations with Modular Forms: Proceedings of a Summer School and Conference, Heidelberg, August/September 2011 (Contributions in Mathematical and ... Sciences) (English and French Edition)
暫譯: 模形式計算:海德堡夏季學校與會議論文集,2011年8月/9月(數學與科學貢獻系列)(英法雙語版)

  • 出版商: Springer
  • 出版日期: 2014-02-04
  • 售價: $6,780
  • 貴賓價: 9.5$6,441
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Hardcover
  • ISBN: 331903846X
  • ISBN-13: 9783319038469
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment.

The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field.

The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols.

The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.

商品描述(中文翻譯)

本卷包含與2011年海德堡大學舉辦的模組形式計算暑期學校及會議相關的原創研究文章、調查文章和講義。會議和暑期學校的一個關鍵主題是理論、算法和實驗之間的相互作用。

這14篇論文為讀者提供了最新的模組形式和自同態形式計算算法的教學課程,以及報告該領域最新發展的原創研究文章。

三場暑期學校的講座介紹了現代算法,並提供了一些有關模組形式計算的理論背景,包括算術群的上同調計算、代數自同態形式以及超收斂模組符號的計算。

11篇會議論文涵蓋了與模組形式計算相關的廣泛主題,包括在古典群上的代數模組形式的格方法、前田猜想的推廣、針對p-adic Rankin三重積L函數特殊值的高效算法、比安奇群的算術方面及實驗數據、模組曲線的實際雅可比理論研究、計算權重為一的模組形式的結果等。